Python实现双向RNN与堆叠的双向RNN的示例代码

 更新时间:2022年07月04日 10:00:01   作者:别团等shy哥发育  
这篇文章主要为大家详细介绍了如何利用Python语言实现双向RNN与堆叠的双向RNN,文中详细讲解了双向RNN与堆叠的双向RNN的原理及实现,需要的可以参考一下

1、双向RNN

双向RNN(Bidirectional RNN)的结构如下图所示。

双向的 RNN 是同时考虑“过去”和“未来”的信息。上图是一个序列长度为 4 的双向RNN 结构。

双向RNN就像是我们做阅读理解的时候从头向后读一遍文章,然后又从后往前读一遍文章,然后再做题。有可能从后往前再读一遍文章的时候会有新的不一样的理解,最后模型可能会得到更好的结果。

2、堆叠的双向RNN

堆叠的双向RNN(Stacked Bidirectional RNN)的结构如上图所示。上图是一个堆叠了3个隐藏层的RNN网络。

注意,这里的堆叠的双向RNN并不是只有双向的RNN才可以堆叠,其实任意的RNN都可以堆叠,如SimpleRNN、LSTM和GRU这些循环神经网络也可以进行堆叠。

堆叠指的是在RNN的结构中叠加多层,类似于BP神经网络中可以叠加多层,增加网络的非线性。

3、双向LSTM实现MNIST数据集分类

import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import LSTM,Dropout,Bidirectional
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt

# 载入数据集
mnist = tf.keras.datasets.mnist
# 载入数据,数据载入的时候就已经划分好训练集和测试集
# 训练集数据x_train的数据形状为(60000,28,28)
# 训练集标签y_train的数据形状为(60000)
# 测试集数据x_test的数据形状为(10000,28,28)
# 测试集标签y_test的数据形状为(10000)
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 对训练集和测试集的数据进行归一化处理,有助于提升模型训练速度
x_train, x_test = x_train / 255.0, x_test / 255.0
# 把训练集和测试集的标签转为独热编码
y_train = tf.keras.utils.to_categorical(y_train,num_classes=10)
y_test = tf.keras.utils.to_categorical(y_test,num_classes=10)

# 数据大小-一行有28个像素
input_size = 28
# 序列长度-一共有28行
time_steps = 28
# 隐藏层memory block个数
cell_size = 50 

# 创建模型
# 循环神经网络的数据输入必须是3维数据
# 数据格式为(数据数量,序列长度,数据大小)
# 载入的mnist数据的格式刚好符合要求
# 注意这里的input_shape设置模型数据输入时不需要设置数据的数量
model = Sequential([
    Bidirectional(LSTM(units=cell_size,input_shape=(time_steps,input_size),return_sequences=True)),
    Dropout(0.2),
    Bidirectional(LSTM(cell_size)),
    Dropout(0.2),
    # 50个memory block输出的50个值跟输出层10个神经元全连接
    Dense(10,activation=tf.keras.activations.softmax)
])

# 循环神经网络的数据输入必须是3维数据
# 数据格式为(数据数量,序列长度,数据大小)
# 载入的mnist数据的格式刚好符合要求
# 注意这里的input_shape设置模型数据输入时不需要设置数据的数量
# model.add(LSTM(
#     units = cell_size,
#     input_shape = (time_steps,input_size),
# ))

# 50个memory block输出的50个值跟输出层10个神经元全连接
# model.add(Dense(10,activation='softmax'))

# 定义优化器
adam = Adam(lr=1e-3)

# 定义优化器,loss function,训练过程中计算准确率            使用交叉熵损失函数
model.compile(optimizer=adam,loss='categorical_crossentropy',metrics=['accuracy'])

# 训练模型
history=model.fit(x_train,y_train,batch_size=64,epochs=10,validation_data=(x_test,y_test))

#打印模型摘要
model.summary()

loss=history.history['loss']
val_loss=history.history['val_loss']

accuracy=history.history['accuracy']
val_accuracy=history.history['val_accuracy']


# 绘制loss曲线
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()
# 绘制acc曲线
plt.plot(accuracy, label='Training accuracy')
plt.plot(val_accuracy, label='Validation accuracy')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()

这个可能对文本数据比较容易处理,这里用这个模型有点勉强,只是简单测试下。

模型摘要:

acc曲线:

loss曲线:

到此这篇关于Python实现双向RNN与堆叠的双向RNN的示例代码的文章就介绍到这了,更多相关Python 双向RNN内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 一文带你手撕Python之散列类型

    一文带你手撕Python之散列类型

    这篇文章主要介绍了Python字典的定义、操作方法和集合的基本概念,字典以键值对形式存储数据,可通过键访问值,操作包括增删改查等,集合是无序不重复的数据结构,适用于去重和集合运算,需要的朋友可以参考下
    2024-09-09
  • python简单验证码识别的实现过程

    python简单验证码识别的实现过程

    很多网站登录都需要输入验证码,如果要实现自动登录就不可避免的要识别验证码,这篇文章主要给大家介绍了关于python简单验证码识别的实现过程,需要的朋友可以参考下
    2021-06-06
  • python thread 并发且顺序运行示例

    python thread 并发且顺序运行示例

    以上源文件是对python中的线程的一个简单应用,实现了对并发线程的顺序运行,也许对你会有小小帮助
    2009-04-04
  • Python3 操作符重载方法示例

    Python3 操作符重载方法示例

    这篇文章主要介绍了Python3 操作符重载方法示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-11-11
  • Python爬虫爬取有道实现翻译功能

    Python爬虫爬取有道实现翻译功能

    这篇文章主要介绍了Python爬虫爬取有道实现翻译功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-11-11
  • 详解通过API管理或定制开发ECS实例

    详解通过API管理或定制开发ECS实例

    在本文里我们给大家整理了关于通过API管理或定制开发ECS的相关实例内容,有需要的朋友们参考学习下。
    2018-09-09
  • python操作mysql、excel、pdf的示例

    python操作mysql、excel、pdf的示例

    这篇文章主要介绍了python操作mysql、excel、pdf的示例,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
    2021-03-03
  • 详解Python中数据库管理模块shelve和dbm的应用

    详解Python中数据库管理模块shelve和dbm的应用

    作为常用的 python 自带数据库管理模块,shelve 和 dbm 都是非常方便的对象持久化存储和检索工具,本文将从用法、优势以及不同点等方面进行介绍,希望对大家有所帮助
    2023-10-10
  • pytorch中函数tensor.numpy()的数据类型解析

    pytorch中函数tensor.numpy()的数据类型解析

    这篇文章主要介绍了pytorch中函数tensor.numpy()的数据类型,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-07-07
  • 详解Python如何使用Falcon构建 API

    详解Python如何使用Falcon构建 API

    Falcon 是一个Python 的 Web 框架,专注于为构建 API 提供一个极其轻量级、超全面的性能平台,下面小编就来为大家详细介绍一下Python如何使用Falcon构建 API吧
    2023-11-11

最新评论