Linux内核的文件预读详解
Linux文件预读算法磁盘I/O性能的发展远远滞后于CPU和内存,因而成为现代计算机系统的一个主要瓶颈。预读可以有效的减少磁盘的寻道次数和应用程序的I/O等待时间,是改进磁盘读I/O性能的重要优化手段之一。本文作者是中国科学技术大学自动化系的博士生,他在1998年开始学习Linux,为了优化服务器的性能,他开始尝试改进Linux kernel,并最终重写了内核的文件预读部分,这些改进被收录到Linux Kernel 2.6.23及其后续版本中。
从寄存器、L1/L2高速缓存、内存、闪存,到磁盘/光盘/磁带/存储网络,计算机的各级存储器硬件组成了一个金字塔结构。越是底层存储容量越大。然而访问速度也越慢,具体表现为更小的带宽和更大的延迟。因而这很自然的便成为一个金字塔形的逐层缓存结构。由此产生了三类基本的缓存管理和优化问题:
◆预取(prefetching)算法,从慢速存储中加载数据到缓存;
◆替换(replacement)算法,从缓存中丢弃无用数据;
◆写回(writeback)算法,把脏数据从缓存中保存到慢速存储。
其中的预取算法,在磁盘这一层次尤为重要。磁盘的机械臂+旋转盘片的数据定位与读取方式,决定了它最突出的性能特点:擅长顺序读写,不善于随机I/O,I/O延迟非常大。由此而产生了两个方面的预读需求。
来自磁盘的需求
简单的说,磁盘的一个典型I/O操作由两个阶段组成:
1.数据定位
平均定位时间主要由两部分组成:平均寻道时间和平均转动延迟。寻道时间的典型值是4.6ms。转动延迟则取决于磁盘的转速:普通7200RPM桌面硬盘的转动延迟是4.2ms,而高端10000RPM的是3ms。这些数字多年来一直徘徊不前,大概今后也无法有大的改善了。在下文中,我们不妨使用 8ms作为典型定位时间。
2.数据传输
持续传输率主要取决于盘片的转速(线速度)和存储密度,最新的典型值为80MB/s。虽然磁盘转速难以提高,但是存储密度却在逐年改善。巨磁阻、垂直磁记录等一系列新技术的采用,不但大大提高了磁盘容量,也同时带来了更高的持续传输率。
显然,I/O的粒度越大,传输时间在总时间中的比重就会越大,因而磁盘利用率和吞吐量就会越大。简单的估算结果如表1所示。如果进行大量4KB的随机I/O,那么磁盘在99%以上的时间内都在忙着定位,单个磁盘的吞吐量不到500KB/s。但是当I/O大小达到1MB的时候,吞吐量可接近50MB /s。由此可见,采用更大的I/O粒度,可以把磁盘的利用效率和吞吐量提高整整100倍。因而必须尽一切可能避免小尺寸I/O,这正是预读算法所要做的。
表1随机读大小与磁盘性能的关系
来自程序的需求
应用程序处理数据的一个典型流程是这样的:while(!done) { read(); compute(); }。假设这个循环要重复5次,总共处理5批数据,则程序运行的时序图可能如图1所示。
图1典型的I/O时序图
不难看出,磁盘和CPU是在交替忙碌:当进行磁盘I/O的时候,CPU在等待;当CPU在计算和处理数据时,磁盘是空闲的。那么是不是可以让两者流水线作业,以便加快程序的执行速度?预读可以帮助达成这一目标。基本的方法是,当CPU开始处理第1批数据的时候,由内核的预读机制预加载下一批数据。这时候的预读是在后台异步进行的,如图2所示。
图2预读的流水线作业
注意,在这里我们并没有改变应用程序的行为:程序的下一个读请求仍然是在处理完当前的数据之后才发出的。只是这时候的被请求的数据可能已经在内核缓存中了,无须等待,直接就能复制过来用。在这里,异步预读的功能是对上层应用程序“隐藏”磁盘I/O的大延迟。虽然延迟事实上仍然存在,但是应用程序看不到了,因而运行的更流畅。
预读的概念
预取算法的涵义和应用非常广泛。它存在于CPU、硬盘、内核、应用程序以及网络的各个层次。预取有两种方案:启发性的(heuristic prefetching)和知情的(informed prefetching)。前者自动自发的进行预读决策,对上层应用是透明的,但是对算法的要求较高,存在命中率的问题;后者则简单的提供API接口,而由上层程序给予明确的预读指示。在磁盘这个层次,Linux为我们提供了三个API接口:posix_fadvise(2), readahead(2), madvise(2)。
不过真正使用上述预读API的应用程序并不多见:因为一般情况下,内核中的启发式算法工作的很好。预读(readahead)算法预测即将访问的页面,并提前把它们批量的读入缓存。
它的主要功能和任务可以用三个关键词来概括:
◆批量,也就是把小I/O聚集为大I/O,以改善磁盘的利用率,提升系统的吞吐量。
◆提前,也就是对应用程序隐藏磁盘的I/O延迟,以加快程序运行。
◆ 预测,这是预读算法的核心任务。前两个功能的达成都有赖于准确的预测能力。当前包括Linux、FreeBSD和Solaris等主流操作系统都遵循了一个简单有效的原则:把读模式分为随机读和顺序读两大类,并只对顺序读进行预读。这一原则相对保守,但是可以保证很高的预读命中率,同时有效率/覆盖率也很好。因为顺序读是最简单而普遍的,而随机读在内核来说也确实是难以预测的。
Linux的预读架构
Linux内核的一大特色就是支持最多的文件系统,并拥有一个虚拟文件系统(VFS)层。早在2002年,也就是2.5内核的开发过程中,Andrew Morton在VFS层引入了文件预读的基本框架,以统一支持各个文件系统。如图所示,Linux内核会将它最近访问过的文件页面缓存在内存中一段时间,这个文件缓存被称为pagecache。如图3所示。一般的read()操作发生在应用程序提供的缓冲区与pagecache之间。而预读算法则负责填充这个pagecache。应用程序的读缓存一般都比较小,比如文件拷贝命令cp的读写粒度就是4KB;内核的预读算法则会以它认为更合适的大小进行预读 I/O,比比如16-128KB。
图3以pagecache为中心的读和预读
大约一年之后,Linus Torvalds把mmap缺页I/O的预取算法单独列出,从而形成了read-around/read-ahead两个独立算法(图4)。read- around算法适用于那些以mmap方式访问的程序代码和数据,它们具有很强的局域性(locality of reference)特征。当有缺页事件发生时,它以当前页面为中心,往前往后预取共计128KB页面。而readahead算法主要针对read()系统调用,它们一般都具有很好的顺序特性。但是随机和非典型的读取模式也大量存在,因而readahead算法必须具有很好的智能和适应性。
图4 Linux中的read-around, read-ahead和direct read
又过了一年,通过Steven Pratt、Ram Pai等人的大量工作,readahead算法进一步完善。其中最重要的一点是实现了对随机读的完好支持。随机读在数据库应用中处于非常突出的地位。在此之前,预读算法以离散的读页面位置作为输入,一个多页面的随机读会触发“顺序预读”。这导致了预读I/O数的增加和命中率的下降。改进后的算法通过监控所有完整的read()调用,同时得到读请求的页面偏移量和数量,因而能够更好的区分顺序读和随机读。
预读算法概要
这一节以linux 2.6.22为例,来剖析预读算法的几个要点。
1.顺序性检测
为了保证预读命中率,Linux只对顺序读(sequential read)进行预读。内核通过验证如下两个条件来判定一个read()是否顺序读:
◆这是文件被打开后的第一次读,并且读的是文件首部;
◆当前的读请求与前一(记录的)读请求在文件内的位置是连续的。
如果不满足上述顺序性条件,就判定为随机读。任何一个随机读都将终止当前的顺序序列,从而终止预读行为(而不是缩减预读大小)。注意这里的空间顺序性说的是文件内的偏移量,而不是指物理磁盘扇区的连续性。在这里Linux作了一种简化,它行之有效的基本前提是文件在磁盘上是基本连续存储的,没有严重的碎片化。
2.流水线预读
当程序在处理一批数据时,我们希望内核能在后台把下一批数据事先准备好,以便CPU和硬盘能流水线作业。Linux用两个预读窗口来跟踪当前顺序流的预读状态:current窗口和ahead窗口。其中的ahead窗口便是为流水线准备的:当应用程序工作在current窗口时,内核可能正在 ahead窗口进行异步预读;一旦程序进入当前的ahead窗口,内核就会立即往前推进两个窗口,并在新的ahead窗口中启动预读I/O。
3.预读的大小
当确定了要进行顺序预读(sequential readahead)时,就需要决定合适的预读大小。预读粒度太小的话,达不到应有的性能提升效果;预读太多,又有可能载入太多程序不需要的页面,造成资源浪费。为此,Linux采用了一个快速的窗口扩张过程:
◆首次预读:readahead_size = read_size * 2; // or *4
预读窗口的初始值是读大小的二到四倍。这意味着在您的程序中使用较大的读粒度(比如32KB)可以稍稍提升I/O效率。
◆后续预读:readahead_size *= 2;
后续的预读窗口将逐次倍增,直到达到系统设定的最大预读大小,其缺省值是128KB。这个缺省值已经沿用至少五年了,在当前更快的硬盘和大容量内存面前,显得太过保守。比如西部数据公司近年推出的WD Raptor 猛禽 10000RPM SATA 硬盘,在进行128KB随机读的时候,只能达到16%的磁盘利用率(图5)。所以如果您运行着Linux服务器或者桌面系统,不妨试着用如下命令把最大预读值提升到1MB看看,或许会有惊喜:
# blockdev–setra 2048 /dev/sda
当然预读大小不是越大越好,在很多情况下,也需要同时考虑I/O延迟问题。
图5 128KB I/O的数据定位时间和传输时间比重
重新发现顺序读
上一节我们解决了是否/何时进行预读,以及读多少的基本问题。由于现实的复杂性,上述算法并不总能奏效,即使是对于顺序读的情况。例如最近发现的重试读(retried read)的问题。
重试读在异步I/O和非阻塞I/O中比较常见。它们允许内核中断一个读请求。这样一来,程序提交的后续读请求看起来会与前面被中断的读请求相重叠。如图6所示。
图6重试读(retried reads)
Linux 2.6.22无法理解这种情况,于是把它误判为随机读。这里的问题在于“读请求”并不代表读取操作实实在在的发生了。预读的决策依据应为后者而非前者。最新发布的2.6.23对此作了改进。新的算法以当前读取的页面状态为主要决策依据,并为此新增了一个页面标志位:PG_readahead,它是“请作异步预读”的一个提示。在每次进行新预读时,算法都会选择其中的一个新页面并标记之。预读规则相应的改为:
◆当读到缺失页面(missing page),进行同步预读;
◆当读到预读页面(PG_readahead page),进行异步预读。
这样一来,ahead预读窗口就不需要了:它实际上是把预读大小和提前量两者作了不必要的绑定。新的标记机制允许我们灵活而精确地控制预读的提前量,这有助于将来引入对笔记本省电模式的支持。
图7 Linux 2.6.23预读算法的工作动态
另一个越来越突出的问题来自于交织读(interleaved read)。这一读模式常见于多媒体/多线程应用。当在一个打开的文件中同时进行多个流(stream)的读取时,它们的读取请求会相互交织在一起,在内核看来好像是很多的随机读。更严重的是,目前的内核只能在一个打开的文件描述符中跟踪一个流的预读状态。因而即使内核对两个流进行预读,它们会相互覆盖和破坏对方的预读状态信息。对此,我们将在即将发布的2.6.24中作一定改进,利用页面和pagecache所提供的状态信息来支持多个流的交织读。
预读建议
相关文章
- 在Linux环境下,升级的对象可以是一般的软件,可以是编译器,也可以是系统的内核,甚至是系统本身。下文就分别讲讲对不同对象的升级方法,需要的朋友可以参考一下2015-10-22
Ubuntu 15.10系统10月22日发布 采用Linux Kernel 4.2内核
Ubuntu最后一个版本Ubuntu 15.10即将发布,最终版将采用Linux内核为4.2版,具体说来,Ubuntu 15.10进入冻结阶段后,其软件栈和内核都不会再有升级,这能够让开发者更好地进2015-10-13- 这篇文章主要介绍了关于Linux内核编译失败的一些解决方案,以initrd影响启动的问题作为重点讲解,需要的朋友可以参考下2015-07-03
Linux如何禁止系统内核Kernel自动升级避免不必要的麻烦
Linux系统在进行升级的时候内核也会跟着更新,有时为了避免不必要的麻烦,如何禁止系统内核Kernel自动升级,可以看看下面的文章2015-06-25- 这篇文章主要介绍了Linux操作系统内核启动参数详解,本文讲解了常用的设备无关启动时参数、内核开发和调试的启动时参数等内容,需要的朋友可以参考下2015-06-03
存储技术原理分析:基于Linux 2.6内核源代码 PDF扫描版[MB]
《存储技术原理分析》适合作为高校计算机相关专业本科生和研究生学习操作系统的辅助和实践教材,也适合作为Linux爱好者学习内核的参考书籍。2015-05-09- Linux内核刚推出的时候还不能使用,需要等待一段时间,下面小编给大家介绍个方法,让Ubuntu系统能够安装最新的Linux内核,感兴趣的朋友可以尝试下2015-03-04
- 《Linux内核编程指南(第3版)》面向希望深入学习这种操作系统的读者,全面介绍了Linux操作系统的技术原理。2015-03-02
- 深入Linux内核架构借助内核源代码中最关键的部分进行讲解,帮助读者掌握重要的知识点,从而在运用中充分展现Linux系统的魅力。2015-03-02
- 内核编程常常看起来像是黑魔法,而在亚瑟 C 克拉克的眼中,它八成就是了。Linux内核和它的用户空间是大不相同的:抛开漫不经心,你必须小心翼翼,因为你编程中的一个bug就2015-11-02
最新评论