Java计算一个数加上100是完全平方数,加上168还是完全平方数

 更新时间:2017年02月21日 23:16:35   投稿:mdxy-dxy  
这篇文章主要介绍了Java计算一个数加上100是完全平方数,加上168还是完全平方数,需要的朋友可以参考下

题目:一个整数,它加上100后是一个完全平方数,加上168又是一个完全平方数,请问该数是多少?

程序分析:在10万以内判断,先将该数加上100后再开方,再将该数加上268后再开方,如果开方后的结果满足如下条件,即是结果。请看具体分析:

程序设计:

public class test {
  public static void main (String[]args){
  long k=0;
  for(k=1;k<=100000l;k++)
  if(Math.floor(Math.sqrt(k+100))==Math.sqrt(k+100) && Math.floor(Math.sqrt(k+168))==Math.sqrt(k+168))
    System.out.println(k);
  }
}

性质1:完全平方数的末位数只能是0,1,4,5,6,9。
性质2:奇数的平方的个位数字为奇数,十位数字为偶数。
证明 奇数必为下列五种形式之一:
10a+1, 10a+3, 10a+5, 10a+7, 10a+9
分别平方后,得
(10a+1)^2=100+20a+1=20a(5a+1)+1
(10a+3)^2=100+60a+9=20a(5a+3)+9
(10a+5)^2=100+100a+25=20 (5a+5a+1)+5
(10a+7)^2=100+140a+49=20 (5a+7a+2)+9
(10a+9)^2=100+180a+81=20 (5a+9a+4)+1
综上各种情形可知:奇数的平方,个位数字为奇数1,5,9;十位数字为偶数。
性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。
证明 已知=10k+6,证明k为奇数。因为的个位数为6,所以m的个位数为4或6,于是可设m=10n+4或10n+6。则
10k+6=(10n+4)=100+(8n+1)x10+6
或 10k+6=(10n+6)=100+(12n+3)x10+6
即 k=10+8n+1=2(5+4n)+1
或 k=10+12n+3=2(5+6n)+3
∴ k为奇数。
推论1:如果一个数的十位数字是奇数,而个位数字不是6,那么这个数一定不是完全平方数。
推论2:如果一个完全平方数的个位数字不是6,则它的十位数字是偶数。
性质4:偶数的平方是4的倍数;奇数的平方是4的倍数加1。
这是因为 (2k+1)=4k(k+1)+1
(2k)=4
性质5:奇数的平方是8n+1型;偶数的平方为8n或8n+4型。
在性质4的证明中,由k(k+1)一定为偶数可得到(2k+1)是8n+1型的数;由为奇数或偶数可得(2k)为8n型或8n+4型的数。
性质6:平方数的形式必为下列两种之一:3k,3k+1。
因为自然数被3除按余数的不同可以分为三类:3m,3m+1, 3m+2。平方后,分别得
(3m)=9=3k
(3m+1)=9+6m+1=3k+1
(3m+2)=9+12m+4=3k+1
同理可以得到:
性质7:不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k型。
性质8:平方数的形式具有下列形式之一:16m,16m+1, 16m+4,16m+9。
除了上面关于个位数,十位数和余数的性质之外,还可研究完全平方数各位数字之和。例如,256它的各位数字相加为2+5+6=13,13叫做256的各位数字和。如果再把13的各位数字相加:1+3=4,4也可以叫做256的各位数字的和。下面我们提到的一个数的各位数字之和是指把它的各位数字相加,如果得到的数字之和不是一位数,就把所得的数字再相加,直到成为一位数为止。我们可以得到下面的命题:
一个数的数字和等于这个数被9除的余数。
下面以四位数为例来说明这个命题。
设四位数为,则
= 1000a+100b+10c+d
= 999a+99b+9c+(a+b+c+d)
= 9(111a+11b+c)+(a+b+c+d)
显然,a+b+c+d是四位数被9除的余数。
对於n位数,也可以仿此法予以证明。
关於完全平方数的数字和有下面的性质:
性质9:完全平方数的数字之和只能是0,1,4,7,9。
证明 因为一个整数被9除只能是9k,9k±1, 9k±2, 9k±3, 9k±4这几种形式,而
(9k)=9(9)+0
(9k±1)=9(9±2k)+1
(9k±2)=9(9±4k)+4
(9k±3)=9(9±6k)+9
(9k±4)=9(9±8k+1)+7
除了以上几条性质以外,还有下列重要性质:
性质10:为完全平方数的充要条件是b为完全平方数。
证明 充分性:设b为平方数,则
==(ac)
必要性:若为完全平方数,=,则
性质11:如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数。
证明 由题设可知,a有质因数p,但无因数,可知a分解成标准式时,p的次方为1,而完全平方数分解成标准式时,各质因数的次方均为偶数,可见a不是完全平方数。
性质12:在两个相邻的整数的平方数之间的所有整数都不是完全平方数,即若
n^2 < k^2 < (n+1)^2
则k一定不是完全平方数。
性质13:一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n本身)。

相关文章

  • java 非常好用的反射框架Reflections介绍

    java 非常好用的反射框架Reflections介绍

    这篇文章主要介绍了java 反射框架Reflections的使用,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04
  • Spring Cloud Stream分区分组原理图解

    Spring Cloud Stream分区分组原理图解

    这篇文章主要介绍了Spring Cloud Stream的分区和分组,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-03-03
  • java中Pulsar InterruptedException 异常

    java中Pulsar InterruptedException 异常

    这篇文章主要为大家介绍了java中Pulsar InterruptedException 异常分析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-02-02
  • 基于IDEA中格式化代码的快捷键分享

    基于IDEA中格式化代码的快捷键分享

    这篇文章主要介绍了基于IDEA中格式化代码的快捷键分享,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-02-02
  • Java集合之LinkedHashSet类详解

    Java集合之LinkedHashSet类详解

    这篇文章主要介绍了Java集合之LinkedHashSet类详解,LinkedHashSet 是 Java 中的一个集合类,它是 HashSet 的子类,并实现了 Set 接口,与 HashSet 不同的是,LinkedHashSet 保留了元素插入的顺序,并且具有 HashSet 的快速查找特性,需要的朋友可以参考下
    2023-09-09
  • Idea启动多个SpringBoot项目的3种最新方案

    Idea启动多个SpringBoot项目的3种最新方案

    SpringBoot自带Tomcat,直接运行main方法里面的SpringApplication.run即可,并且访问时不需要带项目名,这篇文章主要介绍了Idea启动多个SpringBoot项目的3种方案,需要的朋友可以参考下
    2023-02-02
  • MyBatis实现留言板的示例代码

    MyBatis实现留言板的示例代码

    本文主要介绍了MyBatis实现留言板的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2024-08-08
  • SpringBoot 配置提示功能(超详细)

    SpringBoot 配置提示功能(超详细)

    这篇文章主要介绍了SpringBoot 配置提示功能,本文给大家介绍的超详细,通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-10-10
  • Spring HttpMessageConverter的作用及替换解析

    Spring HttpMessageConverter的作用及替换解析

    这篇文章主要介绍了Spring HttpMessageConverter的作用及替换解析,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-02-02
  • 详解Spring Batch 轻量级批处理框架实践

    详解Spring Batch 轻量级批处理框架实践

    这篇文章主要介绍了详解Spring Batch 轻量级批处理框架实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-06-06

最新评论