Python 中pandas.read_excel详细介绍

 更新时间:2017年06月23日 11:03:25   投稿:lqh  
这篇文章主要介绍了Python 中pandas.read_excel详细介绍的相关资料,需要的朋友可以参考下

Python 中pandas.read_excel详细介绍

#coding:utf-8
import pandas as pd
import numpy as np

filefullpath = r"/home/geeklee/temp/all_gov_file/pol_gov_mon/downloads/1.xls"
#filefullpath = r"/home/geeklee/temp/all_gov_file/pol_gov_mon/downloads/26368f3a-ea03-46b9-8033-73615ed07816.xls"
df = pd.read_excel(filefullpath,skiprows=[0])
#df = pd.read_excel(filefullpath, sheetname=[0,2],skiprows=[0])
#sheetname指定为读取几个sheet,sheet数目从0开始
#如果sheetname=[0,2],那代表读取第0页和第2页的sheet
#skiprows=[0]代表读取跳过的行数第0行,不写代表不跳过标题
#df = pd.read_excel(filefullpath, sheetname=None ,skiprows=[0])

print df
print type(df)
#若果有多页,type(df)就为<type 'dict'>
#如果就一页,type(df)就为<class 'pandas.core.frame.DataFrame'>
#{0:dataframe,1:dataframe,2:dataframe}

pandas.read_excel(io, sheetname=0, header=0, skiprows=None, skip_footer=0,
 index_col=None, names=None, parse_cols=None, parse_dates=False, date_parser=None,
 na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None,
 engine=None, squeeze=False, **kwds)

Read an Excel table into a pandas DataFrame

参数解析:

io : string, path object (pathlib.Path or py._path.local.LocalPath),

  file-like object, pandas ExcelFile, or xlrd workbook. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/workbook.xlsx

sheetname : string, int, mixed list of strings/ints, or None, default 0

  Strings are used for sheet names, Integers are used in zero-indexed sheet positions.

  Lists of strings/integers are used to request multiple sheets.

  Specify None to get all sheets.

  str|int -> DataFrame is returned. list|None -> Dict of DataFrames is returned, with keys representing sheets.

  Available Cases

    Defaults to 0 -> 1st sheet as a DataFrame
    1 -> 2nd sheet as a DataFrame
    “Sheet1” -> 1st sheet as a DataFrame
    [0,1,”Sheet5”] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames
    None -> All sheets as a dictionary of DataFrames

header : int, list of ints, default 0

  Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of integers is passed those row positions will be combined into a MultiIndex

skiprows : list-like

  Rows to skip at the beginning (0-indexed)

skip_footer : int, default 0

  Rows at the end to skip (0-indexed)

index_col : int, list of ints, default None

  Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a MultiIndex

names : array-like, default None

  List of column names to use. If file contains no header row, then you should explicitly pass header=None

converters : dict, default None

  Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content.

parse_cols : int or list, default None

    If None then parse all columns,
    If int then indicates last column to be parsed
    If list of ints then indicates list of column numbers to be parsed
    If string then indicates comma separated list of column names and column ranges (e.g. “A:E” or “A,C,E:F”)

squeeze : boolean, default False

  If the parsed data only contains one column then return a Series

na_values : list-like, default None

  List of additional strings to recognize as NA/NaN

thousands : str, default None

  Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format.

keep_default_na : bool, default True

  If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to

verbose : boolean, default False

  Indicate number of NA values placed in non-numeric columns

engine: string, default None

  If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd

convert_float : boolean, default True

  convert integral floats to int (i.e., 1.0 –> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally

has_index_names : boolean, default None

  DEPRECATED: for version 0.17+ index names will be automatically inferred based on index_col. To read Excel output from 0.16.2 and prior that had saved index names, use True.

return返回的结果

parsed : DataFrame or Dict of DataFrames

  DataFrame from the passed in Excel file. See notes in sheetname argument for more information on when a Dict of Dataframes is returned.

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

相关文章

  • 如何将yolov5中的PANet层改为BiFPN详析

    如何将yolov5中的PANet层改为BiFPN详析

    现在yolov5的neck用的是PANet,在efficient论文中提出了BiFPN结构,还有更加不错的性能,下面这篇文章主要给大家介绍了关于如何将yolov5中的PANet层改为BiFPN的相关资料,需要的朋友可以参考下
    2022-06-06
  • python基础操作列表切片解析

    python基础操作列表切片解析

    列表和字符串一样,列表同样可以截取和被索引,列表被截取后返回一个包含所需元素的新列表,List中的元素是可以改变的,需要的朋友可以参考下
    2023-04-04
  • jupyter notebook快速入门及使用详解

    jupyter notebook快速入门及使用详解

    这篇文章主要介绍了jupyter notebook快速入门及使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • python merge、concat合并数据集的实例讲解

    python merge、concat合并数据集的实例讲解

    下面小编就为大家分享一篇python merge、concat合并数据集的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • python随机取list中的元素方法

    python随机取list中的元素方法

    下面小编就为大家分享一篇python随机取list中的元素方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • Python requests模块基础使用方法实例及高级应用(自动登陆,抓取网页源码)实例详解

    Python requests模块基础使用方法实例及高级应用(自动登陆,抓取网页源码)实例详解

    这篇文章主要介绍了Python requests模块基础使用方法实例及高级应用(自动登陆,抓取网页源码,Cookies)实例详解,需要的朋友可以参考下
    2020-02-02
  • pip命令突然无法使用问题以及解决

    pip命令突然无法使用问题以及解决

    当你在使用pip安装Python库时遇到问题,可以尝试以下两种解决方案,第一种是直接在Scripts文件夹内使用CMD命令进行安装,第二种是将Scripts的路径设置为系统环境变量,这样就可以直接在dos中使用pip install进行安装了,以上解决方案仅供参考,如有更好的方法欢迎交流分享
    2024-10-10
  • python实现Simhash算法

    python实现Simhash算法

    这篇文章主要介绍了python实现Simhash算法,simhash算法用来进行文本比对的,simhash包含分词、hash、加权、合并、降维五大步骤,下文围绕更多相关资料介绍,需要的小伙伴可以参考一下
    2022-02-02
  • Python实现的最近最少使用算法

    Python实现的最近最少使用算法

    这篇文章主要介绍了Python实现的最近最少使用算法,涉及节点、时间、流程控制等相关技巧,需要的朋友可以参考下
    2015-07-07
  • python小数字符串转数字的五种方法

    python小数字符串转数字的五种方法

    本文主要介绍了python小数字符串转数字的五种方法,根据具体需求选择合适的方法进行小数字符串转数字,具有一定的参考价值,感兴趣的可以了解一下
    2024-01-01

最新评论