python中matplotlib实现最小二乘法拟合的过程详解

 更新时间:2017年07月11日 11:59:37   作者:Wray  
这篇文章主要给大家介绍了关于python中matplotlib实现最小二乘法拟合的相关资料,文中通过示例代码详细介绍了关于最小二乘法拟合直线和最小二乘法拟合曲线的实现过程,需要的朋友可以参考借鉴,下面来一起看看吧。

前言

最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出)。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

下面这篇文章主要跟大家介绍了关于python中matplotlib实现最小二乘法拟合的相关内容,下面话不多说,来一起看看详细的介绍:

一、最小二乘法拟合直线

生成样本点

首先,我们在直线 y = 3 + 5x 附近生成服从正态分布的随机点,作为拟合直线的样本点。

import numpy as np 
import matplotlib.pyplot as plt

# 在直线 y = 3 + 5x 附近生成随机点
X = np.arange(0, 5, 0.1) 
Z = [3 + 5 * x for x in X] 
Y = [np.random.normal(z, 0.5) for z in Z]

plt.plot(X, Y, 'ro') 
plt.show() 

样本点如图所示:

拟合直线

设 y = a0 + a1*x,我们利用最小二乘法的正则方程组来求解未知系数 a0 与 a1。

numpy 的 linalg 模块中有一个 solve 函数,它可以根据方程组的系数矩阵和方程右端构成的向量来求解未知量。

def linear_regression(x, y): 
 N = len(x)
 sumx = sum(x)
 sumy = sum(y)
 sumx2 = sum(x**2)
 sumxy = sum(x*y)

 A = np.mat([[N, sumx], [sumx, sumx2]])
 b = np.array([sumy, sumxy])

 return np.linalg.solve(A, b)

a0, a1 = linear_regression(X, Y) 

绘制直线

此时,我们已经得到了拟合后的直线方程系数 a0 和 a1。接下来,我们绘制出这条直线,并与样本点做对比。

# 生成拟合直线的绘制点
_X = [0, 5] 
_Y = [a0 + a1 * x for x in _X]

plt.plot(X, Y, 'ro', _X, _Y, 'b', linewidth=2) 
plt.title("y = {} + {}x".format(a0, a1)) 
plt.show() 

拟合效果如下:

二、最小二乘法拟合曲线

生成样本点

与生成直线样本点相同,我们在曲线 y = 2 + 3x + 4x^2 附近生成服从正态分布的随机点,作为拟合曲线的样本点。

import numpy as np 
import matplotlib.pyplot as plt

# y = 2 + 3x + 4x^2
X = np.arange(0, 5, 0.1) 
Z = [2 + 3 * x + 4 * x ** 2 for x in X] 
Y = np.array([np.random.normal(z,3) for z in Z])

plt.plot(X, Y, 'ro') 
plt.show() 

样本点如图所示:

拟合曲线

设该曲线的方程为 y = a0 + a1*x + a2*x^2,同样,我们通过正则方程组来求解未知量 a0、a1 和 a2。

# 生成系数矩阵A
def gen_coefficient_matrix(X, Y): 
 N = len(X)
 m = 3
 A = []
 # 计算每一个方程的系数
 for i in range(m):
  a = []
  # 计算当前方程中的每一个系数
  for j in range(m):
   a.append(sum(X ** (i+j)))
  A.append(a)
 return A

# 计算方程组的右端向量b
def gen_right_vector(X, Y): 
 N = len(X)
 m = 3
 b = []
 for i in range(m):
  b.append(sum(X**i * Y))
 return b

A = gen_coefficient_matrix(X, Y) 
b = gen_right_vector(X, Y)

a0, a1, a2 = np.linalg.solve(A, b) 

绘制曲线

我们根据求得的曲线方程,绘制出曲线的图像。

# 生成拟合曲线的绘制点
_X = np.arange(0, 5, 0.1) 
_Y = np.array([a0 + a1*x + a2*x**2 for x in _X])

plt.plot(X, Y, 'ro', _X, _Y, 'b', linewidth=2) 
plt.title("y = {} + {}x + {}$x^2$ ".format(a0, a1, a2)) 
plt.show() 

拟合效果如下:


总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对脚本之家的支持。

相关文章

  • Python的数据结构与算法的队列详解(3)

    Python的数据结构与算法的队列详解(3)

    这篇文章主要为大家详细介绍了Python的队列,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2022-03-03
  • matplotlib绘图实例演示标记路径

    matplotlib绘图实例演示标记路径

    这篇文章主要介绍了matplotlib绘图实例演示标记路径,分享了相关代码示例,小编觉得还是挺不错的,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01
  • 最简单的matplotlib安装教程(小白)

    最简单的matplotlib安装教程(小白)

    这篇文章主要介绍了最简单的matplotlib安装教程(小白),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-07-07
  • Django admin美化插件suit使用示例

    Django admin美化插件suit使用示例

    这篇文章主要介绍了Django admin美化插件suit使用示例,简单介绍了suit的使用界面示例,官方文档,安装语句等相关内容,具有一定借鉴价值,需要的朋友可以参考下。
    2017-12-12
  • 使用python求解迷宫问题的三种实现方法

    使用python求解迷宫问题的三种实现方法

    关于迷宫问题,常见会问能不能到达某点,以及打印到达的最短路径,下面这篇文章主要给大家介绍了关于如何使用python求解迷宫问题的三种实现方法,需要的朋友可以参考下
    2022-03-03
  • 浅谈python正则的常用方法 覆盖范围70%以上

    浅谈python正则的常用方法 覆盖范围70%以上

    这篇文章主要为大家详细介绍了python正则的常用方法,覆盖范围70%以上,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • 浅谈对python中if、elif、else的误解

    浅谈对python中if、elif、else的误解

    这篇文章主要介绍了浅谈对python中if、elif、else的误解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-08-08
  • 在Python3中初学者应会的一些基本的提升效率的小技巧

    在Python3中初学者应会的一些基本的提升效率的小技巧

    这篇文章主要介绍了在Python3中的一些基本的小技巧,有利于刚刚上手Python的初学者提升开发效率,需要的朋友可以参考下
    2015-03-03
  • Python爬虫实现模拟点击动态页面

    Python爬虫实现模拟点击动态页面

    这篇文章主要介绍了Python爬虫实现模拟点击动态页面,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-03-03
  • 解决jupyter notebook import error但是命令提示符import正常的问题

    解决jupyter notebook import error但是命令提示符import正常的问题

    这篇文章主要介绍了解决jupyter notebook import error但是命令提示符import正常的问题,具有很好的参考
    2020-04-04

最新评论