python django使用haystack:全文检索的框架(实例讲解)
haystack:全文检索的框架
whoosh:纯Python编写的全文搜索引擎
jieba:一款免费的中文分词包
首先安装这三个包
pip install django-haystack
pip install whoosh
pip install jieba
1.修改settings.py文件,安装应用haystack,
2.在settings.py文件中配置搜索引擎
HAYSTACK_CONNECTIONS = { 'default': { # 使用whoosh引擎 'ENGINE': 'haystack.backends.whoosh_cn_backend.WhooshEngine', # 索引文件路径 'PATH': os.path.join(BASE_DIR, 'whoosh_index'), } } # 当添加、修改、删除数据时,自动生成索引 HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor'
3. 在templates目录下创建“search/indexes/blog/”目录 采用blog应用名字下面创建一个文件blog_text.txt
#指定索引的属性
{{ object.title }}
{{ object.text}}
{{ object.keywords }}
4.在需要搜索的应用下面创建search_indexes
from haystack import indexes from models import Post #指定对于某个类的某些数据建立索引 class GoodsInfoIndex(indexes.SearchIndex, indexes.Indexable): text = indexes.CharField(document=True, use_template=True) def get_model(self): return Post #搜索的模型类 def index_queryset(self, using=None): return self.get_model().objects.all()
5.
1. 修改haystack文件
2. 找到虚拟环境py_django下的haystack目录 这个目录根据自己使用的python环境不同,路径也不一样。
3. site-packages/haystack/backends/ 创建一个文件名为ChineseAnalyzer.py文件写入下面代码,用于中文分词
import jieba from whoosh.analysis import Tokenizer, Token class ChineseTokenizer(Tokenizer): def __call__(self, value, positions=False, chars=False, keeporiginal=False, removestops=True, start_pos=0, start_char=0, mode='', **kwargs): t = Token(positions, chars, removestops=removestops, mode=mode, **kwargs) seglist = jieba.cut(value, cut_all=True) for w in seglist: t.original = t.text = w t.boost = 1.0 if positions: t.pos = start_pos + value.find(w) if chars: t.startchar = start_char + value.find(w) t.endchar = start_char + value.find(w) + len(w) yield t def ChineseAnalyzer(): return ChineseTokenizer()
6.
1. 复制whoosh_backend.py文件,改为如下名称
whoosh_cn_backend.py
在复制出来的文件中导入中文分词模块
from .ChineseAnalyzer import ChineseAnalyzer
2. 更改词语分析类 改成中文
查找analyzer=StemmingAnalyzer()改为analyzer=ChineseAnalyzer()
7. 最后一步就是建初始化索引数据
python manage.py rebuild_index
8. 创建搜索模板 在templates/indexes/ 创建search.html模板
搜索结果进行分页,视图向模板中传递的上下文如下
query:搜索关键字
page:当前页的page对象
paginator:分页paginator对象
9. 在自己的应用视图中导入模块
from haystack.generic_views import SearchView
定义一个类重写get_context_data 方法,这样就可以往模板中传递自定义的上下文。
class GoodsSearchView(SearchView): def get_context_data(self, *args, **kwargs): context = super().get_context_data(*args, **kwargs) context['iscart']=1 context['qwjs']=2 return context
应用的urls文件中添加这条url 将类当一个视图的方法使用 .as_view()
url('^search/$', views.BlogSearchView.as_view())
以上这篇python django使用haystack:全文检索的框架(实例讲解)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
浅谈tf.train.Saver()与tf.train.import_meta_graph的要点
这篇文章主要介绍了浅谈tf.train.Saver() 与tf.train.import_meta_graph的要点,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教2021-05-05
最新评论