JDK1.8、JDK1.7、JDK1.6区别看这里

 更新时间:2017年10月31日 09:22:14   作者:十二页  
这篇文章主要为大家详细介绍了JDK1.8、JDK1.7、JDK1.6中的源码,对比阅读,发现修改问题以及改进点,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

这一篇开始说ArrayList

参考代码为jdk1.6_45 jdk1.7_80 jdk1.8_111中的源码,对比阅读,发现修改的问题以及改进点。

public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable

一、基本性质

1、底层使用原生数组实现,实现RandomAccess接口,可以随机访问,随机访问指的是下标索引操作index(i)的时间复杂度是O(1)。

size、isEmpty、get、set、iterator和listIterator操作在O(1)内完成,add(e)操作平均在O(1)内完成,即添加n个元素需要O(n)时间(这个是Collection.add,是在尾部添加注意区分下List.add(index, e))。其他操作基本都是O(n)内完成。ArrayList与LinkedList实现相比,O(n)的各个方法的时间复杂度的常数因子更小。

2、因为底层数组 elementData 的容量是不能改变的,所以容量不够时,需要把 elementData 换成一个更大的数组,这个过程叫作扩容。实际的元素的数量size,总是不会超过底层数组的容量 elementData.length,因为扩容需要申请更大的内存,并且需要原来数组的进行一次复制,所以扩容是个耗时的操作。在添加大量元素之前,使用者最好是预估一个大致的数量,手动调用ensureCapacity进行一次扩容操作,避免一个个添加导致频繁扩容影响性能。

3、ArrayList是未同步的,多线程并发读写时需要外部同步,如果不外部同步,那么可以使用Collections.synchronizedList方法对ArrayList的实例进行一次封装,或者使用Vector。

4、对存储的元素无限制,允许null元素。

5、ArrayList的iterator和listIterator方法返回的迭代器是快速失败的,也就是如果在创建迭代器之后的任何时间被结构性修改,除了通过迭代器自己的remove或add方法之外,迭代器将直接抛出一个ConcurrentModificationException,从而达到快速失败fail-fast的目的,尽量避免不确定的行为。

ArrayList的迭代器的快速失败行为不能被严格保证,并发修改时它会尽量但不100%保证抛出ConcurrentModificationException。因此,依赖于此异常的代码的正确性是没有保障的,迭代器的快速失败行为应该仅用于检测bug。

6、实现clone接口,可以调用其clone方法(虽然clone()是Object中的方法,但是它是protected,使用子类的clone()必须在子类中覆盖此方法)。clone方法复制一个ArrayList,底层数组elementData不共享,但是实际的元素还是共享的。
不过clone是ArrayList中覆盖的,不属于List中的方法,因此常见的声明形式
     List<String> strs = new ArrayList<>();
声明出来的变量不能直接使用clone方法,本身也用得极少。

7、实现Serializable接口,可以被序列化。ArrayList"实现"了自定义序列化方法,这么做主要是为了节省空间 。对于占用空间的大头——元素list,仅仅序列化实际size大小的元素,同时不序列化对于新对象无用属性的——来自父类AbstractList的modCount。ArrayList的实际size不会超过底层数组的length,大多数情况下比底层数组length小,使用默认序列化的话,会直接序列化整个底层数组,序列化后字节流会变大,浪费空间。

二、构造方法

1、默认构造方法,ArrayList()

关于默认构造方法,你可能在别的地方看见过这种话:无参构造方法(默认构造方法)构造的ArrayList的底层数组elementData大小(容量)默认为10。这里告诉你,这不一定是对的。这句话在1.6版本中是对的(更之前的版本我没看),从1.7开始这句话就有问题了。下面我贴出了三个版本的代码:
jdk1.6的,初始化成10个容量。

// jdk1.6的 
/** Constructs an empty list with an initial capacity of ten. */ 
 public ArrayList() { 
 this(10); 
} 

jdk1.7的,相对1.6版本,引入了一个新的常量EMPTY_ELEMENTDATA,它是一个空数组,因此容量为0。

// jdk1.7的 
/** Shared empty array instance used for empty instances. */ 
private static final Object[] EMPTY_ELEMENTDATA = {}; 
 
... 
 
/** Constructs an empty list with an initial capacity of ten. */ 
public ArrayList() { 
 super(); 
 this.elementData = EMPTY_ELEMENTDATA; 
} 

jdk1.8的,相对1.7版本,又引入了一个新的常量DEFAULTCAPACITY_EMPTY_ELEMENTDATA ,它也是一个空数组,因此容量也为0。至于两个空数组有什么区别,看下面一点说的。

/** Shared empty array instance used for empty instances. */ 
private static final Object[] EMPTY_ELEMENTDATA = {}; 
 
/** 
 * Shared empty array instance used for default sized empty instances. We 
 * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when 
 * first element is added. 
 */ 
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; 
 
... 
 
/** Constructs an empty list with an initial capacity of ten. */ 
public ArrayList() { 
 this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; 
} 

对比下可以看出:jdk1.6的无参构造方法(默认构造方法)构造的ArrayList的底层数组elementData大小(容量)默认为10;从1.7开始,无参构造方法构造的ArrayList的底层数组elementData大小默认为0。
java集合类在jdk1.7版本基本上都有一种改动:懒初始化。懒初始化指的是默认构造方法构造的集合类,占据尽可能少的内存空间(对于ArrayList来说,使用空数组来占据尽量少的空间,不使用null是为了避免null判断),在第一次进行包含有添加语义的操作时,才进行真正的初始化工作。

1.7开始的ArrayList,默认构造方法构造的实例,底层数组是空数组,容量为0,在进行第一次add/addAll等操作时才会真正给底层数组赋非empty的值。如果add/addAll添加的元素小于10,则把elementData数组扩容为10个元素大小,否则使用刚好合适的大小(例如,第一次addAll添加6个,那么扩容为10个,第一次添加大于10个的,比如24个,扩容为24个,刚好合适);1.8版本,默认构造的实例这个行为没有改变,只是用的数组名字变了。

顺便吐槽下:jdk这个类维护者,你能不能改下默认构造方法上的注释啊,默认构造方法的行为都改变了,你注释还是用之前的!!!

2、带初始容量的构造方法,public ArrayList(int initialCapacity)

// 1.6 
public ArrayList(int initialCapacity) { 
 super(); 
 if (initialCapacity < 0) 
  throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); 
 this.elementData = new Object[initialCapacity]; 
} 
 
// 1.7 跟1.6的一样 
public ArrayList(int initialCapacity) { 
 super(); 
 if (initialCapacity < 0) 
  throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); 
 this.elementData = new Object[initialCapacity]; 
} 
 
// 1.8 
public ArrayList(int initialCapacity) { 
 if (initialCapacity > 0) { 
  this.elementData = new Object[initialCapacity]; 
 } else if (initialCapacity == 0) { 
  this.elementData = EMPTY_ELEMENTDATA; // 重用空数组,一个小小的优化 
 } else { 
  throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); 
 } 
} 

678三个版本的这个构造方法的实际行为基本一致:如果initialCapacity >= 0,把底层数组elementData赋值为一个大小为initialCapacity的数组,数组的所有元素都是默认值null。1.8稍微进行了一点优化,也是赋值为空数组,但是重用了常量对象。
下面写个简单的例子看一个细微的区别。

// jdk1.6,两个构造的区别很明显 
public class TestArrayList { 
 public static void main(String[] args) { 
  List<String> la = new ArrayList<String>(0); // la.elementData = new Object[0], la.elementData.length = 0 
  la.add("111"); // la.elementDate.length = 1,这里一次性扩容了1个,后续再按照通用扩容策略执行扩容操作 
 
  List<String> lb = new ArrayList<String>(); // lb.elementData = new Object[10], lb.elementData.length = 10 
  lb.add("111"); // lb.elementDate.length = 10,这里没有进行扩容,后续再按照通用扩容策略执行扩容操作 
 } 
} 
 
// jdk1.7,两个构造在第一次进行添加时才看得出区别 
public class TestArrayList { 
 public static void main(String[] args) { 
  List<String> la = new ArrayList<>(0); // la.elementData = new Object[0], la.elementData.length = 0 
  la.add("111"); // la.elementDate.length = 1,这里一次性扩容了1个,后续再按照通用扩容策略执行扩容操作 
 
  List<String> lb = new ArrayList<>(); // lb.elementData = EMPTY_ELEMENTDATA, lb.elementData.length = 0 
  lb.add("111"); // lb.elementDate.length = 10,这里一次性扩容了10个,后续再按照通用扩容策略执行扩容操作 
 } 
} 
 
// jdk1.8,同1.7 
public class TestArrayList { 
 public static void main(String[] args) { 
  List<String> la = new ArrayList<>(0); // la.elementData = EMPTY_ELEMENTDATA, la.elementData.length = 0 
  la.add("111"); // la.elementDate.length = 1,这里一次性扩容了1个,后续再按照通用扩容策略执行扩容操作 
 
  List<String> lb = new ArrayList<>(); // lb.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA, lb.elementData.length = 0 
  lb.add("111"); // lb.elementDate.length = 10,这里一次性扩容了10个,后续再按照通用扩容策略执行扩容操作 
 } 
} 

jdk1.6中new ArrayList<?>()跟new ArrayList<?>(10)的行为是一模一样的,所以跟new ArrayList<?>(0)有很明显区别,这个好理解 。从1.7版本开始,new ArrayList<>()和new ArrayList<>(0),虽然创建后底层内容和容量都一样,但是实际的行为有些细小的差别,那就是这两个在第一次自动扩容时策略不一样。不过这一点影响比较小,基本不影响使用。
1.8中使用两个空数组,正如注释所说的,是在优化(避免创建无用的空数组)的同时,保留其扩容初始策略区别。只用一个空数组就不能再优化的同时,继续保持这个小区别了。

3、Collection拷贝构造方法,public ArrayList(Collection<? extends E> c)

678三个版本的关系和第2点一样。

// jdk 1.6 
public ArrayList(Collection<? extends E> c) { 
 elementData = c.toArray(); 
 size = elementData.length; 
 // c.toArray might (incorrectly) not return Object[] (see 6260652) 
 if (elementData.getClass() != Object[].class) 
  elementData = Arrays.copyOf(elementData, size, Object[].class); 
} 
 
// jdk 1.7 
public ArrayList(Collection<? extends E> c) { 
 elementData = c.toArray(); 
 size = elementData.length; 
 // c.toArray might (incorrectly) not return Object[] (see 6260652) 
 if (elementData.getClass() != Object[].class) 
  elementData = Arrays.copyOf(elementData, size, Object[].class); 
} 
 
// jdk 1.8 
public ArrayList(Collection<? extends E> c) { 
 elementData = c.toArray(); 
 if ((size = elementData.length) != 0) { 
  // c.toArray might (incorrectly) not return Object[] (see 6260652) 
  if (elementData.getClass() != Object[].class) 
   elementData = Arrays.copyOf(elementData, size, Object[].class); 
 } else { 
  // replace with empty array. 
  this.elementData = EMPTY_ELEMENTDATA; 
 } 
} 

关于中间这行注释,可以看下这篇博文

此构造方法会有和Array.copyOf/System.arraycopy一样的问题,那就是它只是新建一个elementData数组,数组的内容对应相等,但是不拷贝实际的元素,实际的元素占据的内存空间还是共享的。


三、确保容量方法(扩容方法):ensureCapacity/ensureCapacityInternal

提前声明下:这两个方法只是确保容量,不一定会扩容,但是为了好理解,下面的文字中所说的"扩容"指的就是这两个方法。
因为原生的数组的容量不能改变,要改变数组的容量,只能是新建一个数组,并把原来数组的内容复制到新数组对应位置上去。数组拷贝使用的是Arrays.copyOf,底层用的是System.arraycopy,比循环赋值效率高。扩容示意图如下。

扩容方法四个位置用到:两个add方法,两个addAll方法,一个反序列化方法,还有就是手动扩容方法ensureCapacity(称之为手动,是因为此方法是public的,可以外部手动调用)。在1.6版本是只有这个手动的方法,内部自动操作也是调用这个方法,1.7开始进行了区分,并且进一步改进了扩容操作。

下面的是jdk1.8的代码,1.7的和1.8的基本相同,唯一的一点区别就是1.8用两个空数组,导致这里的空数组的名字不一样,两个版本的代码可以看作是一样的。

// 手动扩容方法(可以外部调用,不过大多数情况都是List<?> = new ArrayList<>(),这样是调用不到这个方法的) 
// 这个方法只是简单区别下list是不是通过 new ArrayList() 来创建的,这一点前面说了 
// 如果是,则尝试最小扩容10个,不是则尝试扩容指定个,具体也是通过内部扩容方法完成容量确保 
public void ensureCapacity(int minCapacity) { 
 int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) 
  // any size if not default element table 
  ? 0 
  // larger than default for default empty table. It's already 
  // supposed to be at default size. 
  : DEFAULT_CAPACITY; 
 
 if (minCapacity > minExpand) { 
  ensureExplicitCapacity(minCapacity); 
 } 
} 
 
// 下面是内部扩容相关的几个方法的代码 
private void ensureCapacityInternal(int minCapacity) { 
 if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { 
  minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity); 
 } 
 
 ensureExplicitCapacity(minCapacity); 
} 
 
private void ensureExplicitCapacity(int minCapacity) { 
 modCount++; 
 
 // overflow-conscious code 考虑int型溢出 
 if (minCapacity - elementData.length > 0) 
  grow(minCapacity); 
} 
 
private void grow(int minCapacity) { 
 // overflow-conscious code 考虑int型溢出 
 int oldCapacity = elementData.length; 
 int newCapacity = oldCapacity + (oldCapacity >> 1); 
 if (newCapacity - minCapacity < 0) 
  newCapacity = minCapacity; 
 if (newCapacity - MAX_ARRAY_SIZE > 0) 
  newCapacity = hugeCapacity(minCapacity); 
 // minCapacity is usually close to size, so this is a win: 
 elementData = Arrays.copyOf(elementData, newCapacity); 
} 
 
private static int hugeCapacity(int minCapacity) { 
 if (minCapacity < 0) // overflow int型溢出,直接报错 
  throw new OutOfMemoryError(); 
 return (minCapacity > MAX_ARRAY_SIZE) ? 
  Integer.MAX_VALUE : 
  MAX_ARRAY_SIZE; 
} 

下面这是1.6的相关代码,可以对比看下:

public void ensureCapacity(int minCapacity) { 
 modCount++; 
 int oldCapacity = elementData.length; 
 if (minCapacity > oldCapacity) { 
  Object oldData[] = elementData; 
  int newCapacity = (oldCapacity * 3)/2 + 1; 
  if (newCapacity < minCapacity) 
   newCapacity = minCapacity; 
  // minCapacity is usually close to size, so this is a win: 
  elementData = Arrays.copyOf(elementData, newCapacity); 
 } 
} 

区别就是:1.6的方法只是简单进行了逻辑上的操作,没有过多考虑int型溢出的问题,从1.7(上面贴的是1.8的)开始对这个进行了完善。

先仔细看看1.6的问题,整体来说都是int型溢出的问题。

1、没考虑入参minCapacity可能因为int溢出变为负数。这个方法可以外部手动调用,手动扩容传入负数这个肯定是应该拦截掉的。但是自动扩容会因为int溢出产生负数,碰到这种情况时应该特殊处理,而不是什么都不做,等着后面抛出一个ArrayIndexOutOfBoundsException。

2、就是这句代码不太好,过早溢出
     int newCapacity = (oldCapacity * 3)/2 + 1;
虽然上面这行代码和1.7开始的oldCapacity + (oldCapacity >> 1) 看上去一样,都是相当于1.5倍,但实际上是有区别的。两个区别,第一个小区别是jdk1.6的那种乘除运算的数学结果比后面一个大1比如oldCapacity=10,1.6的算法得到16,1.7开始的算法得到15,这个影响不大;第二个区别就是两者在数字比较大是运算结果不一样,比如oldCapacity=10^9,这个数和Integer.MAX_VALUE位数一样,用1.6的算法得到的会是错误的-647483647,用1.7的则是正确的1500000000,这时候明明可以1.5倍扩容,但是jdk1.6却用的是按需扩容。

在计算机里面对于int型的两个不同的数a和b,有
     a-b>0 不等价于 a>b
因为,a-b>0会被int溢出影响,a>b不会受int溢出影响。无符号的int型中a-b>0是一定成立的;有符号的int型,负数可以看成是正数的溢出,假设a = Integer.MAX_VALUE + 10,b = Integer.MAX_VALUE - 10,很明显a是负数,b是正数,运行一遍a>b得到false,再运行一遍a-b得到的是20,a-b>0得到true。因此对于int型,a>b和a-b>0在if判断中有不同的功能,前者是纯粹比较大小,正数一定大于负数;后者可以判断溢出,正数不一定大于负数。

所以1.7版本对上面两个问题做了修改。

1、从1.7开始将内部扩容和外部可以调用的扩容方法分开了,通过源码(上面贴的是1.8的代码,可以看出是一样的)可以看出:外部调用的手动扩容方法ensureCapacity要多一个判断条件 minCapacity > minExpand,这个判断条件拦截掉负数的minCapacity,这样调用内部扩容ensureCapacityInternal方法时,minCapacity一定是正数;内部扩容方法直接就用minCapacity - elementData.length > 0判断,此条件可以检测出int型溢出,碰到溢出最后会抛出一个OOM错误。jdk1.7用OOM,这比jdk1.6用ArrayIndexOutOfBoundsException更好,因为此时数组大小超出了虚拟机对数组的限制,虚拟机无法处理这种情况了,抛出一个ERROR是合理的。

2、使用这行代码
     newCapacity = oldCapacity + (oldCapacity >> 1);
这行不仅仅是是用位运算加快执行速度,上面说了,这种做法才是对的,是真正的1.5倍。不仅仅因为那一个大小的差别,更重要的是避免过早出现int溢出的情况,保证了内部自动扩容会尽量按规定的策略执行。同时整个扩容处理流程中多增加了几处if判断,对各种情况处理更加完善。

还有一个问题就是,MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8。这个是1.7开始才有的,注释说这个是因为在一些虚拟机的数组实现中,会有array header这个保留部分,所以数组最大长度并不是实际的Integer.MAX_VALUE。这个在1.8自带的HotSpot上测试(环境Win7 64位,Java HotSpot(TM) 64-Bit Server VM (build 25.111-b14, mixed mode)),准确值应该是Integer.MAX_VALUE -

2.比这个值大就会出现OutOfMemoryError: Requested array size exceeds VM limit。此Error和hugeCapacity中抛出的OOM基本上差不多,这两个跟一般的OOM还是有区别的。抛出这个异常时,一般是程序有问题,此时虚拟机看看数组大小,就知道了它是不能完成这样的内存分配的,跟剩余的内存空间大小没关系。

测试下实际MAX_ARRAY_SIZE(都是64bit的)
jdk1.8 Integer,MAX_VALUE - 2,超过这个值(实际上也只有两个数可选,Integer.MAX_VALUE和Integer.MAX_VALUE - 1)就抛出OutOfMemoryError: Requested array size exceeds VM limit
jdk1.7 Integer.MAX_VALUE - 2
jdk1.6 Integer.MAX_VALUE,使用这个值能够成功创建数组(使用boolean数组)

在带初始容量的构造方法 public ArrayList(int initialCapacity) 中,并没有判断初始容量是否大于MAX_ARRAY_SIZE。个人觉得还是判断下好,不判断可能在扩容时会有点问题。下面给一组变量值大家试下,看下是不是真有问题。

初始数组长度 elementData.length = Integer.MAX_VALUE - 5 = 2147483642;
还要继续添加的长度 expand = Integer.MAX_VALUE - 2 = 2147483645;
最小容量 minCapacity = expand + elementData.length = -9;
ensureExplicitCapacity方法中 minCapacity - elementData.length = 2147483645 > 0,会继续执行grow方法;
grow方法中 newCapacity = elementData.length + (elementData.length >> 1) = -1073741833;
grow方法中的第一个if,newCapacity - minCapacity = -1073741824 < 0,执行第一个if中的 newCapacity = minCapacity,newCapacity = -9;
grow方法中的第二个if,newCapacity - MAX_ARRAY_SIZE = -2147483648 < 0,不执行第二个if中的语句;
执行最后的Arrays.copyOf,因为newCapacity = -9 < 0,会抛出异常NegativeArraySizeException。

grow方法中第二个if,如果newCapacity是负数,只有是-9到-1这几个负数,才会不执行hugeCapacity方法而是直接执行Arrays.copyOf抛出异常。如果构造方法中拦截判断下是否大于MAX_ARRAY_SIZE,一开始的数组长度就限制在Integer.MAX_VALUE - 8,应该是无法通过一个正数的expand,使得minCapacity在[-9,-1]内。严格证明暂时给不出,实际运行中由于内存限制无法演示。

四、常用方法

ArrayList提供的public方法的实现,基本上都有利用数组随机访问特性,以及System.arraycopy/Arrays.copyOf数组快速复制,进行加速。

1、来自List接口中的方法

E get(int index):这个没啥说的。
E set(int index, E element):这个没啥说的。
void add(int index, E element):这个内部会进行数组复制,复制原来index开始的数组到 index+1 开始的位置,因此在ArrayList中间add元素是比较慢的,平均下来是O(n)的时间。没必要时尽量不使用这个方法,而是直接使用 add(e) 添加到尾部,add(e) 平均下来只会耗费O(1)的时间,效率高很多。
简单画了个图,可以看下。

E remove(int index):基本同上,会进行数组复制,这是数组实现的list避免不了的问题。注意下实现中的elementData[--size] = null; // clear to let GC do its work,这句让list不引用元素,让元素可以被回收(当然,还得其他地方都不引用元素),避免集合类“假删除”造成内存泄漏。
remove示意图如下。


int indexOf(Object o):此方法和下面的lastIndexOf方法会进行null判断,o == null则在遍历时使用 == 进行比较,o != null则在遍历时使用equals方法进行比较,所以使用时请注意下元素的equals方法。
int lastIndexOf(Object o):同上。
boolean addAll(int index, Collection<? extends E> c):elementData数组中插入c.toArray()数组,使用的System.arraycopy复制进去。
ListIterator<E> listIterator(int index):返回一个基于数组操作的ListIterator,ListIterator是Iterator的增强实现。传统的Iterator只能往一个方向迭代,并且只能在迭代中进行remove这一个写操作;ListIterator能够双向迭代,支持迭代时获取下标,并且能够在迭代中进行add和set操作。不过List这一系的迭代器弄得比较乱,抽象类AbstractList中有一套,几个主要实现类ArrayList、LinkedList、Vector、CopyOnWriteArrayList中又各自有一套。父类中那一套是通用的,各个具体的类中的那一套,一般都是优化过的,效率会提升一些,所以不用管父类的迭代器了,那些虽然通用,但是效率不高,差不多过时了。jdk1.6的ArrayList是直接使用父类Abstract中的通用的那一套,效率稍微低些。
ListIterator<E> listIterator():就是new ListItr(0);
List<E> subList(int fromIndex, int toIndex):返回此List的某一段的视图,具体返回类型是java.util.ArrayList$SubList这个内部类,ArrayList.subList是复用原ArrayList的elementdata数组,操作原数组也会对subList有影响。jdk1.6中是用父类的这个方法,返回一个通用的java.util.SubLlist,1.7开始使用的是java.util.ArrayList.SubList,直接操作ArrayList的数组,效率更高。虽然重写了一份功能几乎一样的代码,但是作为一个基层的类,效率还是很重要的。

2、来自Collection(Iteratable)接口的方法

Iterator<E> iterator():返回一个内部的实现类,从jdk1.7开始该实现类使用数组的特性优化实现Iterator的几个方法,1.6返回的是父类AbstractList中定义的一个List接口通用的迭代器。
int size():直接返回属性size
boolean isEmpty():size == 0
boolean contains(Object o):使用的是indexOf
boolean add(E e):尾部添加,只用考虑是否扩容,不扩容时的插入不用考虑数组元素移动的问题,平均下来是O(1)的时间。这里可以简单证明下:初始a个容量,每次扩容后是1.5倍,设为c;那么扩容次数为x = O(logc(n))(c为底数);扩容移动的元素个数,等比数列求和,为O(c^x) = O(n);不扩容时每个元素为O(1),不扩容总共消耗小于O(n);总共耗时O(n),平均耗时O(1)。
boolean remove(Object o):移除所有“相等”的元素,此处相等和indexOf中的一样,null使用 ==,非null使用equals。移除时使用的fastRemove(int index)跟remove(int index)行为一样,因为是内部使用,所以不用检查边界,而且返回void。
boolean containsAll(Collection<?> c):继承使用AbstractCollection中的方法,使用for-each挨个检验contains。对于Iterable的实现类,for-each是用Iterator实现的。在ArrayList这种基于数组的实现中,传统for循环比Iterator要快,Iterator比直接数组下标取值要多不少步骤,在N次简单循环这种狂飙cpu的操作中,每个步骤都是花时间的,所以Iterator(for-each循环)要慢。不够估计是此方法用的不多,在ArrayList中没有用数组的特性进一步优化此方法。1.7以后ArrayList中其余几个All方法都重写了,就这个All方法还是用的父类的。
boolean addAll(Collection<? extends E> c):c.toArray,数组尾部追加数组,先确保容量,然后复制要add的数组就行。
boolean removeAll(Collection<?> c):可以理解为差集操作,这个和下面的retainAll一起讲,都是利用batchRemove方法,只是判断是否删除一个元素时行为相反。1.8在调用batchRemove进行了null判断,c == null会提前抛出NPE,1.6的是重用父类AbstractCollection中的实现。

// 此方法就是一个简单的数组批量删除方法,并且删除后剩余的元素相对顺序不变,且全部往前移动 
// 之所以使用try-fianlly是因为c.contains可能会抛出异常(c == null,或者实现类中不允许null),导致ArrayList没有能更新size以及对底层数组进行整理, 
//  使用finally可以保证保证这一点,并且与父类AbstractCollection中已经实现的removeAll/retainAll方法的行为的一致性 
// 通过finally中的代码可以看出,这些没有进行判断的元素会全部保留。 
private boolean batchRemove(Collection<?> c, boolean complement) { 
 final Object[] elementData = this.elementData; 
 int r = 0, w = 0; 
 boolean modified = false; 
 try { 
  for (; r < size; r++) 
   if (c.contains(elementData[r]) == complement) 
    elementData[w++] = elementData[r]; 
 } finally { 
  // Preserve behavioral compatibility with AbstractCollection, 
  // even if c.contains() throws. 
  if (r != size) { 
   System.arraycopy(elementData, r, elementData, w, size - r); 
   w += size - r; 
  } 
  if (w != size) { 
   // clear to let GC do its work 
   for (int i = w; i < size; i++) 
    elementData[i] = null; 
   modCount += size - w; 
   size = w; 
   modified = true; 
  } 
 } 
 return modified; 
} 

boolean retainAll(Collection<?> c):交集操作,上面removeAll已经讲了。
void clear():for循环清空elementData数组,并把size置为0,不改变容量。
boolean equals(Object o):继承使用父类AbstractList中的方法,算法和判断两个数组内容是否全等一样,就是用的是迭代器而不是传统for循环,此方法用得很少,所以没用数组特性进一步优化。
int hashCode():同上,继承使用父类AbstractList中的方法,hashCode算法也不特殊,线性结构常用的hash = 31 * hash + e.hashCode。
Object[] toArray():直接使用Arrays.copyOf拷贝一份elementData数组作为返回值,也就是数组不共享但是元素共享。
<T> T[] toArray(T[] a):此方法说明下,觉得行为有些不太友好。

public <T> T[] toArray(T[] a) { 
 if (a.length < size) 
  // Make a new array of a's runtime type, but my contents: 
  return (T[]) Arrays.copyOf(elementData, size, a.getClass()); 
 System.arraycopy(elementData, 0, a, 0, size); 
 if (a.length > size) 
  a[size] = null; 
 return a; 
} 

此方法很简单,分3种情况处理:给定数组空间小了,新建一样大小数组并拷贝过去(新建操作是在Arrays.copyOf里面完成的);刚好相等,直接拷贝就过去完事;给定数组大了,拷贝过去后,由于只覆盖了原数组的前面一部分,再把接下来的一个元素变为null。

觉得不友好的就是给定数组大了的这种情况,因为它会多覆盖掉一个值,注释中说这么做的原因是“当调用者知道列表不包含任何空元素时,这在确定列表的长度时非常有用”,这是个坑啊。下面的demo简单展示了这个坑。

public class TestArrayList { 
 public static void main(String[] args) { 
  List<String> sList = Arrays.asList("0", "1", "2", "3", "4", "5", "6", "7", "8", "9"); 
  // 推荐使用空数组 
  String[] s0 = {}; 
  System.err.println("s0 = " + Arrays.toString(sList.toArray(s0))); 
  // s0 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 
 
  // 也可以使用等长数组 
  String[] s10 = new String[sList.size()]; 
  System.err.println("s10 = " + Arrays.toString(sList.toArray(s10))); 
  // s10 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 
 
  // 除非你清楚,否则不要像下面这么做,因为s20[10]被此方法设置为null 
  String[] s20 = new String[20]; 
  s20[10] = "10"; 
  s20[11] = "11"; 
  s20[12] = "12"; 
  System.err.println("s20 = " + Arrays.toString(sList.toArray(s20))); 
  // s20 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, null, 11, 12, null, null, null, null, null, null, null] 
 } 
} 

五、独有的两个方法
public void ensureCapacity(int minCapacity):可以外部调用的手动扩容方法,在要添加大量元素之前,预估下容量,调用这个方法手动扩容,避免频繁自动扩容降低性能。
public void trimToSize():节省空间,使得elementData刚好容纳下所有元素。

六、几个jdk1.8新增的函数式、stream有关的方法

这里不说。集合类这部分要说,也放在以后一起说

简单总结下,jdk1.7版本对比1.6版本,三个改动:
1、懒初始化,因此默认构造方法创建的是空数组,不再是10个大小的数组;
2、扩容相关的完善;
3、一些方法不再直接使用父类的通用实现,改为利用数组特性的更有效率的实现。
对比着看更容易发现问题,也跟有收获。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • 详解SpringMVC解决跨域的两种方案

    详解SpringMVC解决跨域的两种方案

    本篇文章主要介绍了详解SpringMVC解决跨域的两种方案,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-08-08
  • 关于Java语法糖以及语法糖的原理和用法

    关于Java语法糖以及语法糖的原理和用法

    这篇文章主要介绍了关于Java什么是语法糖以及语法糖的种类,也称糖衣语法,是由英国计算机学家 Peter.J.Landin 发明的一个术语,指在计算机语言中添加的某种语法,这种语法对语言的功能并没有影响,但是更方便程序员使用,需要的朋友可以参考下
    2023-05-05
  • Spring Cloud集成Nacos Config动态刷新源码剖析

    Spring Cloud集成Nacos Config动态刷新源码剖析

    这篇文章主要为大家介绍了Spring Cloud集成Nacos Config动态刷新源码剖析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-08-08
  • Java浅析枚举类的使用

    Java浅析枚举类的使用

    枚举类型可以取代以往常量的定义方式,即将常量封装在类或接口中。此外,枚举类型还提供了安全检查功能。本文就来和大家讲讲Java中枚举类的用法,需要的可以参考一下
    2022-07-07
  • Netty分布式NioEventLoop优化selector源码解析

    Netty分布式NioEventLoop优化selector源码解析

    这篇文章主要介绍了Netty分布式NioEventLoop优化selector源码解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-03-03
  • 详解Java中的 枚举与泛型

    详解Java中的 枚举与泛型

    这篇文章主要介绍了 详解Java中的 枚举与泛型的相关资料,需要的朋友可以参考下
    2017-03-03
  • java8中Stream的使用以及分割list案例

    java8中Stream的使用以及分割list案例

    这篇文章主要介绍了java8中Stream的使用以及分割list案例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-08-08
  • 关于Spring的@Autowired依赖注入常见错误的总结

    关于Spring的@Autowired依赖注入常见错误的总结

    有时我们会使用@Autowired自动注入,同时也存在注入到集合、数组等复杂类型的场景。这都是方便写 bug 的场景,本篇文章带你了解Spring @Autowired依赖注入的坑
    2021-09-09
  • Springboot配置管理Externalized Configuration深入探究

    Springboot配置管理Externalized Configuration深入探究

    这篇文章主要介绍了Springboot配置管Externalized Configuration深入探究,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2024-01-01
  • 最全面的JVM优化经验总结

    最全面的JVM优化经验总结

    这篇文章主要介绍了最全面的JVM优化经验总结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,,需要的朋友可以参考下
    2019-06-06

最新评论