C++基于回溯法解决八皇后问题示例

 更新时间:2017年11月07日 09:06:07   作者:侯凯  
这篇文章主要介绍了C++基于回溯法解决八皇后问题,简单描述了八皇后问题,以及回溯法的原理与解决八皇后问题的相关操作技巧,需要的朋友可以参考下

本文实例讲述了C++基于回溯法解决八皇后问题的方法。分享给大家供大家参考,具体如下:

回溯法的基本做法是搜索,或是一种组织得井井有条的,能避免不必要搜索的穷举式搜索法。这种方法适用于解一些组合数相当大的问题。

回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。算法搜索至解空间树的任意一点时,先判断该结点是否包含问题的解。如果肯定不包含,则跳过对该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。

回溯法指导思想——走不通,就掉头。设计过程:确定问题的解空间;确定结点的扩展规则;搜索。

n皇后问题

要在n*n的国际象棋棋盘中放n个皇后,使任意两个皇后都不能互相吃掉。规则:皇后能吃掉同一行、同一列、同一对角线的任意棋子。求所有的解。n=8是就是著名的八皇后问题了。

设八个皇后为xi,分别在第i行(i=1,2,3,4……,8);

问题的解状态:可以用(1,x1),(2,x2),……,(8,x8)表示8个皇后的位置;

由于行号固定,可简单记为:(x1,x2,x3,x4,x5,x6,x7,x8);

问题的解空间:(x1,x2,x3,x4,x5,x6,x7,x8),1≤xi≤8(i=1,2,3,4……,8),共88个状态;

约束条件:八个(1,x1),(2,x2) ,(3,x3),(4,x4) ,(5,x5), (6,x6) , (7,x7), (8,x8)不在同一行、同一列和同一对角线上。

盲目的枚举算法:通过8重循环模拟搜索空间中的88个状态,从中找出满足约束条件的“答案状态”。程序如下:

/*
 *作者:侯凯
 *说明:八皇后——盲目迭代法
 *日期:2013-12-18
 */
#include <iostream>
using namespace std;
bool check_1(int a[],int n)
{
for(int i=2;i<=n;i++)
{
 for(int j=1;j<=i-1;j++)
 {
  if ((a[i]==a[j])||(abs(a[i]-a[j])==i-j))
  {
   return false;
  }
 }
}
return true;//不冲突
}
void queens_1()
{
 int a[9];
 int count = 0;
 for(a[1]=1;a[1]<=8;a[1]++)
 {
  for(a[2]=1;a[2]<=8;a[2]++)
  {
   for(a[3]=1;a[3]<=8;a[3]++)
   {
    for(a[4]=1;a[4]<=8;a[4]++)
    {
     for(a[5]=1;a[5]<=8;a[5]++)
     {
      for(a[6]=1;a[6]<=8;a[6]++)
      {
       for(a[7]=1;a[7]<=8;a[7]++)
       {
        for(a[8]=1;a[8]<=8;a[8]++)
        {
         if(!check_1(a,8)) 
          continue;
         else
         {
          for(int i=1;i<=8;i++) 
          {
           cout<<a[i];
          }
          cout<<endl;
          count++;
         }
        }
       }
      }
     }
    }
   }
  }
 }
 cout<<count<<endl;
}
void main()
{
 queens_1();
}

程序思想比较简单,最后可知共92种摆放方法。如果能够排除那些没有前途的状态,会节约时间——回溯法(走不通,就回头)。

bool check_2 (int a[ ],int n)
{//多次被调用,只需一重循环 
 for(int i=1;i<=n-1;i++)
 {
  if((abs(a[i]-a[n])==n-i)||(a[i]==a[n]))
   return false;
 }  
 return true;
}
void queens_2()
{
 int a[9];
 int count = 0;
 for(a[1]=1;a[1]<=8;a[1]++)
 {
  for(a[2]=1;a[2]<=8;a[2]++)
  {
   if (!check_2(a,2)) continue;
   for(a[3]=1;a[3]<=8;a[3]++)
   {
    if (!check_2(a,3)) continue;
    for(a[4]=1;a[4]<=8;a[4]++)
    {
     if (!check_2(a,4)) continue;
     for(a[5]=1;a[5]<=8;a[5]++)
     {
      if (!check_2(a,5)) continue;
      for(a[6]=1;a[6]<=8;a[6]++)
      {
       if (!check_2(a,6)) continue;
       for(a[7]=1;a[7]<=8;a[7]++)
       {
        if (!check_2(a,7)) continue;
        for(a[8]=1;a[8]<=8;a[8]++)
        {
         if (!check_2(a,8)) 
          continue;
         else
         {
          for(int i=1;i<=8;i++) 
          {
           cout<<a[i];
          }
          cout<<endl;
          count++;
         }
        }
       }
      }
     }
    }
   }
  }
 }
 cout<<count<<endl;
}
void main()
{
 queens_2();
}

n此算法可读性很好,体现了“回溯”。但它只针对八皇后问题,解决任意的n皇后问题还要修改程序结构。如果要解决n皇后的问题,就需要将n作为参数传递给函数,函数需要重写来实现回溯(不能采用级联的for循环,n不确定);从另一方面,程序中出现了大量的for循环,而且for中的函数结构很相似,自然想到的是递归迭代回溯。这就是回溯比较常用的两种实现方法:非递归回溯和递归回溯。

非递归回溯的程序实现:

void backdate (int n)
{ 
 int count = 0;
 int a[100];
 int k = 1;
 a[1]=0; 
 while(k>0)
 {
  a[k]=a[k]+1;//对应for循环的1~n
  while((a[k]<=n)&&(!check_2(a,k)))//搜索第k个皇后位置
  {
   a[k]=a[k]+1;
  }
  if(a[k]<=n)//找到了合理的位置
  {
   if(k==n )
   {//找到一组解
    for(int i=1;i<=8;i++) 
    {
     cout<<a[i];
    }
    cout<<endl;
    count++;
   } 
   else 
   {
    k=k+1;//继续为第k+1个皇后找到位置,对应下一级for循环 
    a[k]=0;//下一个皇后一定要从头开始搜索
   }
  }
  else
  {
   k=k-1;//回溯,对应执行外内层for循环回到更上层 
  }
 }
 cout<<count<<endl;
}
void main()
{
 backdate(8);
}

这样也可以得到,8皇后问题的92中结果。更简单、可读的方法是采用递归的方式,如下:

int a[100], n, count;
void backtrack(int k)
{
 if (k>n)//找到解
 {
  for(int i=1;i<=8;i++) 
  {
   cout<<a[i];
  }
  cout<<endl;
  count++;
 }
 else
 {
  for (int i = 1;i <=n; i++)
  {
   a[k] = i;
   if (check_2(a,k) == 1)
   {backtrack(k+1);}
  }
 }
}
void main()
{
 n=8,count=0;
 backtrack(1);
 cout<<count<<endl;
}

可见,递归调用大大减少了代码量,也增加了程序的可读性。给出其中的一个解,如下:

希望本文所述对大家C++程序设计有所帮助。

相关文章

  • C++基于消息队列的多线程实现示例代码

    C++基于消息队列的多线程实现示例代码

    这篇文章主要给大家介绍了关于C++基于消息队列的多线程实现的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用C++具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-04-04
  • 浅析c#中WebBrowser控件的使用方法

    浅析c#中WebBrowser控件的使用方法

    以下是对c#中WebBrowser控件的使用方法进行了详细的分析介绍,需要的朋友参考下
    2013-07-07
  • C语言位运算符的具体使用

    C语言位运算符的具体使用

    位运算是指按二进制进行的运算。在系统软件中,常常需要处理二进制位的问题。本文就详细的介绍一下,感兴趣的可以了解一下
    2021-09-09
  • C++超详细讲解函数对象

    C++超详细讲解函数对象

    在c++中,我们把所有能当作函数使用的对象统称为函数对象。它是实现operator()的任何类型,此运算符被称为调用运算符,当调用此操 作符时,其表现形式如同普通函数调用一般,因此取名叫函数对象
    2022-06-06
  • C语言杨氏矩阵查找算法实例讲解

    C语言杨氏矩阵查找算法实例讲解

    杨氏矩阵是一个数字矩阵,矩阵的每一行从左到右一次递增,矩阵从上到下递增,在这样的矩阵中查找一个数字是否存在。时间复杂度小于O(N),有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪
    2022-09-09
  • 关于C语言函数strstr()的分析以及实现

    关于C语言函数strstr()的分析以及实现

    以下是对C语言中strstr()函数的使用进行了详细的分析介绍,需要的朋友可以参考下
    2013-07-07
  • 利用C++实现最长公共子序列与最长公共子串

    利用C++实现最长公共子序列与最长公共子串

    这篇文章主要给大家介绍了如何利用C++实现最长公共子序列与最长公共子串,文章一开始就给大家简单的介绍了什么是子序列,子串应该比较好理解就不用多介绍了,人后通过算法及示例代码详细介绍了C++实现的方法,有需要的朋友们可以参考借鉴,下面来一起看看吧。
    2016-12-12
  • C++中与输入相关的istream类成员函数简介

    C++中与输入相关的istream类成员函数简介

    这篇文章主要介绍了C++中与输入相关的istream类成员函数简介,包括eof函数和peek函数以及putback函数还有ignore函数,需要的朋友可以参考下
    2015-09-09
  • C语言数据结构详细解析二叉树的操作

    C语言数据结构详细解析二叉树的操作

    二叉树可以简单理解为对于一个节点来说,最多拥有一个上级节点,同时最多具备左右两个下级节点的数据结构。本文将详细介绍一下C++中二叉树的实现和遍历,需要的可以参考一下
    2022-04-04
  • C++小游戏教程之猜数游戏的实现

    C++小游戏教程之猜数游戏的实现

    这篇文章主要和大家详细介绍如何利用C++做一个简易的猜数游戏,分为用户猜数和系统猜数。文中的示例代码讲解详细 ,感兴趣的小伙伴可以尝试一下
    2022-11-11

最新评论