详细分析python3的reduce函数

 更新时间:2017年12月05日 08:40:52   投稿:laozhang  
小编给大家整理了python3的reduce函数详细用法以及相关的技巧,需要的朋友们参考一下吧。

reduce() 函数在 python 2 是内置函数, 从python 3 开始移到了 functools 模块。

官方文档是这样介绍的

reduce(...)
reduce(function, sequence[, initial]) -> value

Apply a function of two arguments cumulatively to the items of a sequence,
from left to right, so as to reduce the sequence to a single value.
For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
((((1+2)+3)+4)+5). If initial is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the
sequence is empty.

从左到右对一个序列的项累计地应用有两个参数的函数,以此合并序列到一个单一值。

例如,reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) 计算的就是((((1+2)+3)+4)+5)。

如果提供了 initial 参数,计算时它将被放在序列的所有项前面,如果序列是空的,它也就是计算的默认结果值了

嗯, 这个文档其实不好理解。看了还是不懂。 序列 其实就是python中 tuple list dictionary string 以及其他可迭代物,别的编程语言可能有数组。

reduce 有 三个参数

function 有两个参数的函数, 必需参数
sequence tuple ,list ,dictionary, string等可迭代物,必需参数
initial 初始值, 可选参数

reduce的工作过程是 :在迭代sequence(tuple ,list ,dictionary, string等可迭代物)的过程中,首先把 前两个元素传给 函数参数,函数加工后,然后把得到的结果和第三个元素作为两个参数传给函数参数, 函数加工后得到的结果又和第四个元素作为两个参数传给函数参数,依次类推。 如果传入了 initial 值, 那么首先传的就不是 sequence 的第一个和第二个元素,而是 initial值和 第一个元素。经过这样的累计计算之后合并序列到一个单一返回值

reduce 代码举例,使用REPL演示

>>> def add(x, y):
...  return x+y
...
>>> from functools import reduce
>>> reduce(add, [1,2,3,4])
>>>

上面这段 reduce 代码,其实就相当于 1 + 2 + 3 + 4 = 10, 如果把加号改成乘号, 就成了阶乘了
当然 仅仅是求和的话还有更简单的方法,如下

>>> sum([1,2,3,4])
10
>>>

很多教程只讲了一个加法求和,太简单了,对新手加深理解还不够。下面讲点更深入的例子

还可以把一个整数列表拼成整数,如下

>>> from functools import reduce
>>> reduce(lambda x, y: x * 10 + y, [1 , 2, 3, 4, 5])
12345
>>>

对一个复杂的sequence使用reduce ,看下面代码,更多的代码不再使用REPL, 使用编辑器编写

from functools import reduce
scientists =({'name':'Alan Turing', 'age':105},
    {'name':'Dennis Ritchie', 'age':76},
    {'name':'John von Neumann', 'age':114},
    {'name':'Guido van Rossum', 'age':61})
def reducer(accumulator , value):
 sum = accumulator['age'] + value['age']
 return sum
total_age = reduce(reducer, scientists)
print(total_age)

这段代码会出错,看下图的执行过程

所以代码需要修改

from functools import reduce
scientists =({'name':'Alan Turing', 'age':105, 'gender':'male'},
    {'name':'Dennis Ritchie', 'age':76, 'gender':'male'},
    {'name':'Ada Lovelace', 'age':202, 'gender':'female'},
    {'name':'Frances E. Allen', 'age':84, 'gender':'female'})
def reducer(accumulator , value):
 sum = accumulator + value['age']
 return sum
total_age = reduce(reducer, scientists, 0)
print(total_age)

7, 9 行 红色部分就是修改 部分。 通过 help(reduce) 查看 文档,reduce 有三个参数, 第三个参数是初始值的意思,是可有可无的参数。

修改之后就不出错了,流程如下

这个仍然也可以用 sum 来更简单的完成

sum([x['age'] for x in scientists ])

做点更高级的事情,按性别分组

from functools import reduce
scientists =({'name':'Alan Turing', 'age':105, 'gender':'male'},
    {'name':'Dennis Ritchie', 'age':76, 'gender':'male'},
    {'name':'Ada Lovelace', 'age':202, 'gender':'female'},
    {'name':'Frances E. Allen', 'age':84, 'gender':'female'})
def group_by_gender(accumulator , value):
 accumulator[value['gender']].append(value['name'])
 return accumulator
grouped = reduce(group_by_gender, scientists, {'male':[], 'female':[]})
print(grouped)

输出

{'male': ['Alan Turing', 'Dennis Ritchie'], 'female': ['Ada Lovelace', 'Frances E. Allen']}

可以看到,在 reduce 的初始值参数传入了一个dictionary,, 但是这样写 key 可能出错,还能再进一步自动化,运行时动态插入key

修改代码如下

grouped = reduce(group_by_gender, scientists, collections.defaultdict(list))

当然 先要 import collections 模块

这当然也能用 pythonic way 去解决

import itertools
scientists =({'name':'Alan Turing', 'age':105, 'gender':'male'},
    {'name':'Dennis Ritchie', 'age':76, 'gender':'male'},
    {'name':'Ada Lovelace', 'age':202, 'gender':'female'},
    {'name':'Frances E. Allen', 'age':84, 'gender':'female'})
grouped = {item[0]:list(item[1])
   for item in itertools.groupby(scientists, lambda x: x['gender'])}
print(grouped)

再来一个更晦涩难懂的玩法。工作中要与其他人协作的话,不建议这么用,与上面的例子做同样的事,看不懂无所谓。

from functools import reduce
scientists =({'name':'Alan Turing', 'age':105, 'gender':'male'},
    {'name':'Dennis Ritchie', 'age':76, 'gender':'male'},
    {'name':'Ada Lovelace', 'age':202, 'gender':'female'},
    {'name':'Frances E. Allen', 'age':84, 'gender':'female'})
grouped = reduce(lambda acc, val: {**acc, **{val['gender']: acc[val['gender']]+ [val['name']]}}, scientists, {'male':[], 'female':[]})
print(grouped)

**acc, **{val['gneder']... 这里使用了 dictionary merge syntax , 从 python 3.5 开始引入, 详情请看 PEP 448 - Additional Unpacking Generalizations 怎么使用可以参考这个 python - How to merge two dictionaries in a single expression? - Stack Overflow

python 社区推荐写可读性好的代码,有更好的选择时不建议用reduce,所以 python 2 中内置的reduce 函数 移到了 functools模块中

相关文章

  • Python迭代器的实现原理

    Python迭代器的实现原理

    这篇文章主要介绍了Python迭代器的实现原理,文章基于python的相关资料展开对Python迭代器的详细介绍,需要的小伙伴可以参考一下
    2022-05-05
  • Django框架中数据的连锁查询和限制返回数据的方法

    Django框架中数据的连锁查询和限制返回数据的方法

    这篇文章主要介绍了Django框架中数据的连锁查询和限制返回数据的方法,Django是Python重多高人气框架中最为著名的一个,需要的朋友可以参考下
    2015-07-07
  • python如何在word中存储本地图片

    python如何在word中存储本地图片

    这篇文章主要介绍了python如何在word中存储本地图片,想了解docx模块的同学,可以参考下
    2021-04-04
  • Python处理键映射值操作详解

    Python处理键映射值操作详解

    这篇文章主要为大家详细介绍了Python中的处理键映射值操作的相关资料,文中的示例代码讲解详细,具有一定的学习价值,感兴趣的小伙伴可以了解一下
    2022-11-11
  • PyTorch中torch.manual_seed()的用法实例详解

    PyTorch中torch.manual_seed()的用法实例详解

    在Pytorch中可以通过相关随机数来生成张量,并且可以指定生成随机数的分布函数等,下面这篇文章主要给大家介绍了关于PyTorch中torch.manual_seed()用法的相关资料,需要的朋友可以参考下
    2022-06-06
  • 通过Python使用saltstack生成服务器资产清单

    通过Python使用saltstack生成服务器资产清单

    人工去对每一台服务器的硬件信息并记录早已经过去了,无论通过脚本还是自动化工具都是可以进行一次编写到处抓取的,本文主要使用saltstack作为使用工具,然后利用其提供的APi编写所需的Python脚本
    2016-03-03
  • python 利用jinja2模板生成html代码实例

    python 利用jinja2模板生成html代码实例

    这篇文章主要介绍了python 利用jinja2模板生成html代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-10-10
  • 利用django-suit模板添加自定义的菜单、页面及设置访问权限

    利用django-suit模板添加自定义的菜单、页面及设置访问权限

    这篇文章主要给大家介绍了关于利用django-suit模板添加自定义的菜单、页面及设置访问权限的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起看看吧
    2018-07-07
  • python语言线程标准库threading.local解读总结

    python语言线程标准库threading.local解读总结

    在本篇文章里我们给各位整理了一篇关于python threading.local源码解读的相关文章知识点,有需要的朋友们可以学习下。
    2019-11-11
  • Python 创建新文件时避免覆盖已有的同名文件的解决方法

    Python 创建新文件时避免覆盖已有的同名文件的解决方法

    今天小编就为大家分享一篇Python 创建新文件时避免覆盖已有的同名文件的解决方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-11-11

最新评论