Python基于动态规划算法解决01背包问题实例
本文实例讲述了Python基于动态规划算法解决01背包问题。分享给大家供大家参考,具体如下:
在01背包问题中,在选择是否要把一个物品加到背包中,必须把该物品加进去的子问题的解与不取该物品的子问题的解进行比较,这种方式形成的问题导致了许多重叠子问题,使用动态规划来解决。n=5是物品的数量,c=10是书包能承受的重量,w=[2,2,6,5,4]是每个物品的重量,v=[6,3,5,4,6]是每个物品的价值,先把递归的定义写出来:
然后自底向上实现,代码如下:
def bag(n,c,w,v): res=[[-1 for j in range(c+1)] for i in range(n+1)] for j in range(c+1): res[0][j]=0 for i in range(1,n+1): for j in range(1,c+1): res[i][j]=res[i-1][j] if j>=w[i-1] and res[i][j]<res[i-1][j-w[i-1]]+v[i-1]: res[i][j]=res[i-1][j-w[i-1]]+v[i-1] return res def show(n,c,w,res): print('最大价值为:',res[n][c]) x=[False for i in range(n)] j=c for i in range(1,n+1): if res[i][j]>res[i-1][j]: x[i-1]=True j-=w[i-1] print('选择的物品为:') for i in range(n): if x[i]: print('第',i,'个,',end='') print('') if __name__=='__main__': n=5 c=10 w=[2,2,6,5,4] v=[6,3,5,4,6] res=bag(n,c,w,v) show(n,c,w,res)
输出结果如下:
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
相关文章
Python 操作mysql数据库查询之fetchone(), fetchmany(), fetchall()用法示例
这篇文章主要介绍了Python 操作mysql数据库查询之fetchone(), fetchmany(), fetchall()用法,结合实例形式分析了Python使用pymysql模块的fetchone(), fetchmany(), fetchall()方法进行mysql数据库查询的操作技巧,需要的朋友可以参考下2019-10-10Python的ORM框架中SQLAlchemy库的查询操作的教程
这篇文章主要介绍了Python的ORM框架中SQLAlchemy库的查询操作的教程,SQLAlchemy用来操作数据库十分方便,需要的朋友可以参考下2015-04-04python GUI库图形界面开发之PyQt5信号与槽事件处理机制详细介绍与实例解析
这篇文章主要介绍了python GUI库图形界面开发之PyQt5信号与槽事件处理机制详细介绍与实例解析,需要的朋友可以参考下2020-03-03
最新评论