Python数据可视化编程通过Matplotlib创建散点图代码示例

 更新时间:2017年12月09日 09:47:28   作者:kekezhai  
这篇文章主要介绍了Python数据可视化编程通过Matplotlib创建散点图实例,具有一定借鉴价值,需要的朋友可以参考下。

Matplotlib简述:

Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D方面)。该项目是由JohnHunter于2002年启动的,其目的是为Python构建一个MATLAB式的绘图接口。如果结合PythonIDE使用比如PyCharm,matplotlib还具有诸如缩放和平移等交互功能。它不仅支持各种操作系统上许多不同的GUI后端,而且还能将图片导出为各种常见的矢量(vector)和光栅(raster)图:PDF、SVG、JPG、PNG、BMP、GIF等。此外,matplotlib还有许多插件工具集,如用于3D图形的mplot3d以及用于地图和投影的basemap。

准备数据:从文本文件中解析数据

本文使用的数据主要包含以下三种特征:每年获得的飞行常客里程数,玩视频游戏所耗时间百分比,每周消费的冰淇淋公升数。其中分类结果作为文件的第四列,并且只有3、2、1三种分类值。

飞行里程数  游戏耗时百分比  冰淇淋公升数  分类结果
 40920  8.326976  0.953952  3
 14488  7.153469  1.673904  
 26052  1.441871  0.805124  1
......  ......  ......  ......

上述特征数据的格式经过file2matrix函数解析处理之后,可输出为矩阵和类标签向量。

将文本记录转换为Numpy的解析程序:

使用file2matrix读取文件数据,必须确保待解析文件存储在当前的工作目录中。导入数据之后,简单检查一下数据格式:

分析数据:使用Matplotlib创建散点图

编辑kNN.py文件,引入matplotlib,调用matplotlib的scatter绘制散点图。

import matplotlib
import matplotlib.pyplot as plt
def file2matrix(filename):
......
return returnMat,classLabelVector
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
fig = plt.figure()
ax = fig.add_subpot(111)
ax.scatter(datingDataMat[:,1],datingDataMat[:,2])
plt.show()

散点图使用datingDataMat矩阵的第二、第三列数据,分别表示特征值“玩视频游戏所耗时间百分比”和“每周消费的冰淇淋公升数”。

上图由于没有使用样本分类的特征值,很难看到任何有用的数据模式信息。为了更好理解数据信息,Matplotlib库提供的scatter函数支持个性化标记散点图上的点。调用scatter函数使用下列参数:

ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels))
plt.show()

上图利用datingLabels存储的类标签属性,在散点图上绘制了色彩不等、尺寸不同的点。因而基本上可以从图中看到数据点所属三个样本分类的区域轮廓。为了得到更好的效果,采用datingDataMat矩阵的属性列1和2展示数据,并以红色的'*'表示类标签1、蓝色的'o'表示表示类标签2、绿色的'+'表示类标签3,修改参数如下:

import numpy as np
......
datingLabels = array(datingLabels)
idx_1 = np.where(datingLabels==1)
p1 = ax.scatter(datingDataMat[idx_1,0],datingDataMat[idx_1:,1],market = '*',color = 'r',label='1',s=20
idx_2 = np.where(datingLabels==2)
p2 = ax.scatter(datingDataMat[idx_2,0],datingDataMat[idx_2:,1],market = 'o',color ='b',label='1',s=10
idx_3 = np.where(datingLabels==3)
p3 = ax.scatter(datingDataMat[idx_3,0],datingDataMat[idx_3:,1],market = '+',color ='g',label='1',s=30
plt.legend(loc = 'upper right')
plt.show()

总结

本文简单介绍了Matplotlib,并以实例分析了如何使用Matplotlib库图形化展示数据,最后通过修改matplotlib的scatter函数参数使得散点图的分类区域更加清晰。

希望对大家有所帮助。如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

  • Python中的装饰器链(decorator chain)详解

    Python中的装饰器链(decorator chain)详解

    在Python中,装饰器是一种高级功能,它允许你在不修改函数或类代码的情况下,为它们添加额外的功能,装饰器通常用于日志记录、性能测量、权限检查等场景,当多个装饰器应用于同一个函数或类时,形成装饰器链,这篇文章主要介绍了Python中的装饰器链详解,需要的朋友可以参考下
    2024-06-06
  • python计算两个地址之间的距离方法

    python计算两个地址之间的距离方法

    今天小编就为大家分享一篇python计算两个地址之间的距离方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-06-06
  • python模拟登陆,用session维持回话的实例

    python模拟登陆,用session维持回话的实例

    今天小编就为大家分享一篇python模拟登陆,用session维持回话的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • pytest多重断言的实现

    pytest多重断言的实现

    本文主要介绍了pytest多重断言的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • Python 占位符的使用方法详解

    Python 占位符的使用方法详解

    这篇文章主要介绍了Python 占位符的使用方法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • python无法识别vim中文代码的解决方案

    python无法识别vim中文代码的解决方案

    这篇文章主要介绍了python无法识别vim中文代码的解决方案,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • Python中pygal绘制雷达图代码分享

    Python中pygal绘制雷达图代码分享

    这篇文章主要介绍了Python中pygal绘制雷达图代码分享,具有一定借鉴价值,需要的朋友可以参考下。
    2017-12-12
  • Python Playwright安装和基本使用问题记录

    Python Playwright安装和基本使用问题记录

    这篇文章主要介绍了Playwright安装和基本使用问题记录,playwright是一款新型的自动化测试工具,功能非常强大,有很多优点,缺点就是使用的人比较少,本文通过实例代码介绍的非常详细,需要的朋友可以参考下
    2023-05-05
  • 使用TensorFlow直接获取处理MNIST数据方式

    使用TensorFlow直接获取处理MNIST数据方式

    今天小编就为大家分享一篇使用TensorFlow直接获取处理MNIST数据方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • python数据挖掘Apriori算法实现关联分析

    python数据挖掘Apriori算法实现关联分析

    这篇文章主要为大家介绍了python数据挖掘Apriori算法实现关联分析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05

最新评论