python实现kMeans算法

 更新时间:2017年12月21日 10:58:43   作者:开贰锤  
这篇文章主要为大家详细介绍了python实现kMeans算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

聚类是一种无监督的学习,将相似的对象放到同一簇中,有点像是全自动分类,簇内的对象越相似,簇间的对象差别越大,则聚类效果越好。

1、k均值聚类算法

k均值聚类将数据分为k个簇,每个簇通过其质心,即簇中所有点的中心来描述。首先随机确定k个初始点作为质心,然后将数据集分配到距离最近的簇中。然后将每个簇的质心更新为所有数据集的平均值。然后再进行第二次划分数据集,直到聚类结果不再变化为止。

伪代码为

随机创建k个簇质心
当任意一个点的簇分配发生改变时:
    对数据集中的每个数据点:
        对每个质心:
            计算数据集到质心的距离
        将数据集分配到最近距离质心对应的簇
    对每一个簇,计算簇中所有点的均值并将均值作为质心

python实现

import numpy as np
import matplotlib.pyplot as plt

def loadDataSet(fileName): 
 dataMat = [] 
 with open(fileName) as f:
  for line in f.readlines():
   line = line.strip().split('\t')
   dataMat.append(line)
 dataMat = np.array(dataMat).astype(np.float32)
 return dataMat


def distEclud(vecA,vecB):
 return np.sqrt(np.sum(np.power((vecA-vecB),2)))
def randCent(dataSet,k):
 m = np.shape(dataSet)[1]
 center = np.mat(np.ones((k,m)))
 for i in range(m):
  centmin = min(dataSet[:,i])
  centmax = max(dataSet[:,i])
  center[:,i] = centmin + (centmax - centmin) * np.random.rand(k,1)
 return center
def kMeans(dataSet,k,distMeans = distEclud,createCent = randCent):
 m = np.shape(dataSet)[0]
 clusterAssment = np.mat(np.zeros((m,2)))
 centroids = createCent(dataSet,k)
 clusterChanged = True
 while clusterChanged:
  clusterChanged = False
  for i in range(m):
   minDist = np.inf
   minIndex = -1
   for j in range(k):
    distJI = distMeans(dataSet[i,:],centroids[j,:])
    if distJI < minDist:
     minDist = distJI
     minIndex = j
   if clusterAssment[i,0] != minIndex:
    clusterChanged = True
   clusterAssment[i,:] = minIndex,minDist**2
  for cent in range(k):
   ptsInClust = dataSet[np.nonzero(clusterAssment[:,0].A == cent)[0]]
   centroids[cent,:] = np.mean(ptsInClust,axis = 0)
 return centroids,clusterAssment



data = loadDataSet('testSet.txt')
muCentroids, clusterAssing = kMeans(data,4)
fig = plt.figure(0)
ax = fig.add_subplot(111)
ax.scatter(data[:,0],data[:,1],c = clusterAssing[:,0].A)
plt.show()

print(clusterAssing)

2、二分k均值算法

K均值算法可能会收敛到局部最小值,而非全局最小。一种用于度量聚类效果的指标为误差平方和(SSE)。因为取了平方,更加重视原理中心的点。为了克服k均值算法可能会收敛到局部最小值的问题,有人提出来二分k均值算法。
首先将所有点作为一个簇,然后将该簇一分为二,然后选择所有簇中对其划分能够最大程度减低SSE的值的簇,直到满足指定簇数为止。

伪代码

将所有点看成一个簇
计算SSE
while 当簇数目小于k时:
    for 每一个簇:
        计算总误差
        在给定的簇上进行k均值聚类(k=2)
        计算将该簇一分为二的总误差
    选择使得误差最小的那个簇进行划分操作

python实现

import numpy as np
import matplotlib.pyplot as plt

def loadDataSet(fileName): 
 dataMat = [] 
 with open(fileName) as f:
  for line in f.readlines():
   line = line.strip().split('\t')
   dataMat.append(line)
 dataMat = np.array(dataMat).astype(np.float32)
 return dataMat


def distEclud(vecA,vecB):
 return np.sqrt(np.sum(np.power((vecA-vecB),2)))
def randCent(dataSet,k):
 m = np.shape(dataSet)[1]
 center = np.mat(np.ones((k,m)))
 for i in range(m):
  centmin = min(dataSet[:,i])
  centmax = max(dataSet[:,i])
  center[:,i] = centmin + (centmax - centmin) * np.random.rand(k,1)
 return center
def kMeans(dataSet,k,distMeans = distEclud,createCent = randCent):
 m = np.shape(dataSet)[0]
 clusterAssment = np.mat(np.zeros((m,2)))
 centroids = createCent(dataSet,k)
 clusterChanged = True
 while clusterChanged:
  clusterChanged = False
  for i in range(m):
   minDist = np.inf
   minIndex = -1
   for j in range(k):
    distJI = distMeans(dataSet[i,:],centroids[j,:])
    if distJI < minDist:
     minDist = distJI
     minIndex = j
   if clusterAssment[i,0] != minIndex:
    clusterChanged = True
   clusterAssment[i,:] = minIndex,minDist**2
  for cent in range(k):
   ptsInClust = dataSet[np.nonzero(clusterAssment[:,0].A == cent)[0]]
   centroids[cent,:] = np.mean(ptsInClust,axis = 0)
 return centroids,clusterAssment

def biKmeans(dataSet,k,distMeans = distEclud):
 m = np.shape(dataSet)[0]
 clusterAssment = np.mat(np.zeros((m,2)))
 centroid0 = np.mean(dataSet,axis=0).tolist()
 centList = [centroid0]
 for j in range(m):
  clusterAssment[j,1] = distMeans(dataSet[j,:],np.mat(centroid0))**2
 while (len(centList)<k):
  lowestSSE = np.inf
  for i in range(len(centList)):
   ptsInCurrCluster = dataSet[np.nonzero(clusterAssment[:,0].A == i)[0],:]
   centroidMat,splitClustAss = kMeans(ptsInCurrCluster,2,distMeans)
   sseSplit = np.sum(splitClustAss[:,1])
   sseNotSplit = np.sum(clusterAssment[np.nonzero(clusterAssment[:,0].A != i)[0],1])
   if (sseSplit + sseNotSplit) < lowestSSE:
    bestCentToSplit = i
    bestNewCents = centroidMat.copy()
    bestClustAss = splitClustAss.copy()
    lowestSSE = sseSplit + sseNotSplit
  print('the best cent to split is ',bestCentToSplit)
#  print('the len of the bestClust')
  bestClustAss[np.nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList)
  bestClustAss[np.nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit

  clusterAssment[np.nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:] = bestClustAss.copy()
  centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]
  centList.append(bestNewCents[1,:].tolist()[0])
 return np.mat(centList),clusterAssment

data = loadDataSet('testSet2.txt')
muCentroids, clusterAssing = biKmeans(data,3)
fig = plt.figure(0)
ax = fig.add_subplot(111)
ax.scatter(data[:,0],data[:,1],c = clusterAssing[:,0].A,cmap=plt.cm.Paired)
ax.scatter(muCentroids[:,0],muCentroids[:,1])
plt.show()

print(clusterAssing)
print(muCentroids)

代码及数据集下载:K-means

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python 读取文件并把矩阵转成numpy的两种方法

    python 读取文件并把矩阵转成numpy的两种方法

    今天小编就为大家分享一篇python 读取文件并把矩阵转成numpy的两种方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02
  • Python调用Jar包的两种方式小结

    Python调用Jar包的两种方式小结

    这篇文章主要介绍了Python调用Jar包的两种方式小结,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-12-12
  • python使用PIL模块获取图片像素点的方法

    python使用PIL模块获取图片像素点的方法

    今天小编就为大家分享一篇python使用PIL模块获取图片像素点的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • pip install urllib2不能安装的解决方法

    pip install urllib2不能安装的解决方法

    今天小编就为大家分享一篇pip install urllib2不能安装的解决方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-06-06
  • ubuntu迁移anaconda到另外的目录(完美解决)

    ubuntu迁移anaconda到另外的目录(完美解决)

    本文主要介绍了ubuntu迁移anaconda到另外的目录,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-07-07
  • Keras自定义实现带masking的meanpooling层方式

    Keras自定义实现带masking的meanpooling层方式

    这篇文章主要介绍了Keras自定义实现带masking的meanpooling层方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • python如何快速拼接字符串

    python如何快速拼接字符串

    这篇文章主要介绍了python如何快速拼接字符串,帮助大家理解和学习python,感兴趣的朋友可以了解下
    2020-10-10
  • python编程普通及类和静态方法示例详解

    python编程普通及类和静态方法示例详解

    普通方法会将实例传入方法当中(通常用self表示),类方法会将类传入方法当中(通常用cls表示),静态方法中传入与类无关的变量。下面将举例详细说明
    2021-10-10
  • 使用python设置Excel工作表网格线的隐藏与显示

    使用python设置Excel工作表网格线的隐藏与显示

    Excel表格界面的直观性很大程度上得益于表格中的网格线设计,这些线条帮助用户精确对齐数据,清晰划分单元格,本文将介绍如何使用Python设置隐藏或显示Excel工作表的网格线,实现自动话及批量处理,感兴趣的朋友可以参考下
    2024-06-06
  • 一篇文章带你了解python异常基础

    一篇文章带你了解python异常基础

    今天小编就为大家分享一篇关于Python中的异常介绍,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2021-08-08

最新评论