基于Python实现的ID3决策树功能示例

 更新时间:2018年01月02日 10:34:46   作者:leeliyang  
这篇文章主要介绍了基于Python实现的ID3决策树功能,简单描述了ID3决策树的相关概念,并结合实例形式分析了Python实现ID3决策树的具体定义与使用技巧,需要的朋友可以参考下

本文实例讲述了基于Python实现的ID3决策树功能。分享给大家供大家参考,具体如下:

ID3算法是决策树的一种,它是基于奥卡姆剃刀原理的,即用尽量用较少的东西做更多的事。ID3算法,即Iterative Dichotomiser 3,迭代二叉树3代,是Ross Quinlan发明的一种决策树算法,这个算法的基础就是上面提到的奥卡姆剃刀原理,越是小型的决策树越优于大的决策树,尽管如此,也不总是生成最小的树型结构,而是一个启发式算法。

如下示例是一个判断海洋生物数据是否是鱼类而构建的基于ID3思想的决策树

# coding=utf-8
import operator
from math import log
import time
def createDataSet():
  dataSet = [[1, 1, 'yes'],
        [1, 1, 'yes'],
        [1, 0, 'no'],
        [0, 1, 'no'],
        [0, 1, 'no'],
        [0,0,'maybe']]
  labels = ['no surfaceing', 'flippers']
  return dataSet, labels
# 计算香农熵
def calcShannonEnt(dataSet):
  numEntries = len(dataSet)
  labelCounts = {}
  for feaVec in dataSet:
    currentLabel = feaVec[-1]
    if currentLabel not in labelCounts:
      labelCounts[currentLabel] = 0
    labelCounts[currentLabel] += 1
  shannonEnt = 0.0
  for key in labelCounts:
    prob = float(labelCounts[key]) / numEntries
    shannonEnt -= prob * log(prob, 2)
  return shannonEnt
def splitDataSet(dataSet, axis, value):
  retDataSet = []
  for featVec in dataSet:
    if featVec[axis] == value:
      reducedFeatVec = featVec[:axis]
      reducedFeatVec.extend(featVec[axis + 1:])
      retDataSet.append(reducedFeatVec)
  return retDataSet
def chooseBestFeatureToSplit(dataSet):
  numFeatures = len(dataSet[0]) - 1 # 因为数据集的最后一项是标签
  baseEntropy = calcShannonEnt(dataSet)
  bestInfoGain = 0.0
  bestFeature = -1
  for i in range(numFeatures):
    featList = [example[i] for example in dataSet]
    uniqueVals = set(featList)
    newEntropy = 0.0
    for value in uniqueVals:
      subDataSet = splitDataSet(dataSet, i, value)
      prob = len(subDataSet) / float(len(dataSet))
      newEntropy += prob * calcShannonEnt(subDataSet)
    infoGain = baseEntropy - newEntropy
    if infoGain > bestInfoGain:
      bestInfoGain = infoGain
      bestFeature = i
  return bestFeature
# 因为我们递归构建决策树是根据属性的消耗进行计算的,所以可能会存在最后属性用完了,但是分类
# 还是没有算完,这时候就会采用多数表决的方式计算节点分类
def majorityCnt(classList):
  classCount = {}
  for vote in classList:
    if vote not in classCount.keys():
      classCount[vote] = 0
    classCount[vote] += 1
  return max(classCount)
def createTree(dataSet, labels):
  classList = [example[-1] for example in dataSet]
  if classList.count(classList[0]) == len(classList): # 类别相同则停止划分
    return classList[0]
  if len(dataSet[0]) == 1: # 所有特征已经用完
    return majorityCnt(classList)
  bestFeat = chooseBestFeatureToSplit(dataSet)
  bestFeatLabel = labels[bestFeat]
  myTree = {bestFeatLabel: {}}
  del (labels[bestFeat])
  featValues = [example[bestFeat] for example in dataSet]
  uniqueVals = set(featValues)
  for value in uniqueVals:
    subLabels = labels[:] # 为了不改变原始列表的内容复制了一下
    myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,
                                bestFeat, value), subLabels)
  return myTree
def main():
  data, label = createDataSet()
  t1 = time.clock()
  myTree = createTree(data, label)
  t2 = time.clock()
  print myTree
  print 'execute for ', t2 - t1
if __name__ == '__main__':
  main()

运行结果如下:

{'no surfaceing': {0: {'flippers': {0: 'maybe', 1: 'no'}}, 1: {'flippers': {0: 'no', 1: 'yes'}}}}
execute for 0.0103958394532

最后我们测试一下这个脚本即可,如果想把这个生成的决策树用图像画出来,也只是在需要在脚本里面定义一个plottree的函数即可。

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

  • Python函数装饰器的使用教程

    Python函数装饰器的使用教程

    在了解了Python函数装饰器基础知识和闭包之后,开始正式学习函数装饰器。感兴趣的朋友可以参考本文
    2021-06-06
  • python里使用正则的findall函数的实例详解

    python里使用正则的findall函数的实例详解

    这篇文章主要介绍了python里使用正则的findall函数的实例详解的相关资料,希望通过本文能帮助到大家,需要的朋友可以参考下
    2017-10-10
  • Python 绘制北上广深的地铁路线动态图

    Python 绘制北上广深的地铁路线动态图

    这篇文章主要介绍了用python制作北上广深——地铁线路动态图,文中的示例代码讲解详细,对我们的工作或学习都有一定的价值,感兴趣的同学可以学习一下
    2021-12-12
  • 使用Python实现批量修改文件的修改日期功能

    使用Python实现批量修改文件的修改日期功能

    在日常的文件管理中,您可能需要批量修改文件的修改日期,比如,您可能希望将某个文件夹中的所有文件的修改日期随机设置为6到8月份之间的日期,这在数据整理中可能非常有用,本文将详细介绍如何使用Python实现这一功能,需要的朋友可以参考下
    2024-10-10
  • 解决python3 urllib 链接中有中文的问题

    解决python3 urllib 链接中有中文的问题

    今天小编就为大家分享一篇解决python3 urllib 链接中有中文的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • 为什么说python适合写爬虫

    为什么说python适合写爬虫

    在本文中,小编给读者们整理的一篇关于分析为什么说python适合写爬虫的语言的相关内容,有兴趣的朋友们可以学习下。
    2020-06-06
  • Python从PDF中提取文本的方法效率总结

    Python从PDF中提取文本的方法效率总结

    日常工作中我们经常会用到pdf格式的文件,大多数情况下是浏览或者编辑pdf信息,但有时候需要提取pdf中的文本,这篇文章主要给大家总结介绍了关于Python从PDF中提取文本的方法效率,需要的朋友可以参考下
    2023-09-09
  • python 双循环遍历list 变量判断代码

    python 双循环遍历list 变量判断代码

    这篇文章主要介绍了python 双循环遍历list 变量判断代码,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • 基于PyQt制作小红书图片抓取工具

    基于PyQt制作小红书图片抓取工具

    这篇文章主要为大家详细介绍了如何基于PyQt制作一个小红书图片抓取工具,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-11-11
  • Python可变参数会自动填充前面的默认同名参数实例

    Python可变参数会自动填充前面的默认同名参数实例

    今天小编就为大家分享一篇Python可变参数会自动填充前面的默认同名参数实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-11-11

最新评论