python实现求最长回文子串长度

 更新时间:2018年01月22日 08:46:15   作者:熔遁丶螺旋手里剑  
最长回文子串问题:给定一个字符串,求它的最长回文子串长度。如果一个字符串正着读和反着读是一样的,那它就是回文串。今天我们就来探讨下这个问题

给定一个字符串,求它最长的回文子串长度,例如输入字符串'35534321',它的最长回文子串是'3553',所以返回4。

最容易想到的办法是枚举出所有的子串,然后一一判断是否为回文串,返回最长的回文子串长度。不用我说,枚举实现的耗时是我们无法忍受的。那么有没有高效查找回文子串的方法呢?答案当然是肯定的,那就是中心扩展法,选择一个元素作为中心,然后向外发散的寻找以该元素为圆心的最大回文子串。但是又出现了新的问题,回文子串的长度即可能是基数,也可能好是偶数,对于长度为偶数的回文子串来说是不存在中心元素的。那是否有一种办法能将奇偶长度的子串归为一类,统一使用中心扩展法呢?它就是manacher算法,在原字符串中插入特殊字符,例如插入#后原字符串变成'#3#5#5#3#4#3#2#1#'。现在我们对新字符串使用中心扩展发即可,中心扩展法得到的半径就是子串的长度。

现在实现思路已经明确了,先转化字符串'35534321'  ---->  '#3#5#5#3#4#3#2#1#',然后求出以每个元素为中心的最长回文子串的长度。以下给出python实现:

#!/usr/bin/python
# -*- coding: utf-8 -*-

def max_substr(string):
  s_list = [s for s in string]
  string = '#' + '#'.join(s_list) + '#'
  max_length = 0
  length = len(string)
  for index in range(0, length):
    r_length = get_length(string, index)
    if max_length < r_length:
      max_length = r_length
  return max_length

def get_length(string, index):
  # 循环求出index为中心的最长回文字串
  length = 0
  r_ = len(string)
  for i in range(1,index+1):
    if index+i < r_ and string[index-i] == string[index+i]:
      length += 1
    else:
      break
  return length

if __name__ == "__main__":
  result = max_substr("35534321")
  print result

功能已经实现了,经过测试也没有bug,但是我们静下心来想一想,目前的解法是否还有优化空间呢?根据目前的解法,我们求出了‘35534321‘中每个元素中心的最大回文子串。当遍历到'4'时,我们已经知道目前最长的回文子串的长度max_length是4,这是我们求出了以4为中心的最长回文子串长度是3,它比max_length要小,所以我们不更新max_length。换句话说,我们计算以4为中心的最长回文字串长度是做了无用功。这就是我们要优化的地方,既然某个元素的最长的回文子串长度并没有超过max_length,我们就没有必要计算它的最长回文子串,在遍历一个新的元素时,我们要优先判断以它为中心的回文子串的长度是否能超越max_length,如果不能超过,就继续遍历下一个元素。以下是优化后的实现:

#!/usr/bin/python
# -*- coding: utf-8 -*-

def max_substr(string):
  s_list = [s for s in string]
  string = '#' + '#'.join(s_list) + '#'
  max_length = 0
  length = len(string)
  for index in range(0, length):
    r_length = get_length2(string, index, max_length)
    if max_length < r_length:
      max_length = r_length
  return max_length

def get_length2(string, index, max_length):
  # 基于已知的最长字串求最长字串
  # 1.中心+最大半径超出字符串范围, return
  r_ = len(string)
  if index + max_length > r_:
    return max_length

  # 2.无法超越最大半径, return
  l_string = string[index - max_length + 1 : index + 1]
  r_string = string[index : index + max_length]
  if l_string != r_string[::-1]:
    return max_length

  # 3.计算新的最大半径
  result = max_length
  for i in range(max_length, r_):
    if index-i >= 0 and index+i < r_ and string[index-i] == string[index+i]:
      result += 1
    else:
      break
  return result - 1

if __name__ == "__main__":
  result = max_substr("35534321")
  print result

那么速度到底提升了多少呢,以字符串1000个‘1'为例,优化前的算法执行时间为0.239018201828,优化后为0.0180191993713,速度提升了10倍左右

/usr/bin/python /Users/hakuippei/PycharmProjects/untitled/the_method_of_programming.py
0.239018201828
0.0180191993713

再给大家分享一个实例:

#!usr/bin/env python
#encoding:utf-8

'''
__Author__:沂水寒城
功能:寻找最长回文子序列
'''

def slice_window(one_str,w=1):
  '''
  滑窗函数
  '''
  res_list=[]
  for i in range(0,len(one_str)-w+1):
    res_list.append(one_str[i:i+w])
  return res_list


def is_huiwen(one_str_list): 
  '''
  输入一个字符串列表,判断是否为回文序列 
  ''' 
  if len(one_str_list)==1: 
    return True  
  else: 
    half=len(one_str_list)/2 
    if len(one_str_list)%2==0: 
      first_list=one_str_list[:half] 
      second_list=one_str_list[half:] 
    else: 
      first_list=one_str_list[:half] 
      second_list=one_str_list[half+1:] 
    if first_list==second_list[::-1]: 
      return True  
    else: 
      return False 


def find_longest_sub_palindrome_str(one_str):
  '''
  主函数,寻找最长回文子序列
  '''
  all_sub=[]
  for i in range(1,len(one_str)):
    all_sub+=slice_window(one_str,i)
  all_sub.append(one_str)
  new_list=[]
  for one in all_sub:
    if is_huiwen(list(one)):
      new_list.append(one)
  new_list.sort(lambda x,y:cmp(len(x),len(y)),reverse=True)
  print new_list[0]


if __name__ == '__main__':
  one_str_list=['uabcdcbaop','abcba','dmfdkgbbfdlg','mnfkabcbadk']
  for one_str in one_str_list:
    find_longest_sub_palindrome_str(one_str)

结果如下:

abcdcba 
abcba 
bb 
abcba 
[Finished in 0.3s] 

相关文章

  • Python 序列的方法总结

    Python 序列的方法总结

    这篇文章主要介绍了Python 序列的方法总结的相关资料,需要的朋友可以参考下
    2016-10-10
  • python获取mp3文件信息的方法

    python获取mp3文件信息的方法

    这篇文章主要介绍了python获取mp3文件信息的方法,涉及Python针对文件属性操作的相关技巧,需要的朋友可以参考下
    2015-06-06
  • Python中使用正则表达式及正则表达式匹配规则详解

    Python中使用正则表达式及正则表达式匹配规则详解

    这篇文章主要介绍了Python中使用正则表达式以及正则表达式匹配规则,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-03-03
  • 使用pyinstaller打包PySide2程序中遇到的问题

    使用pyinstaller打包PySide2程序中遇到的问题

    说到打包,我们就需要用到python程序的打包工具pyinstaller了,这个包安装简单,使用同样简单,下面这篇文章主要给大家介绍了关于使用pyinstaller打包PySide2程序中遇到的问题,需要的朋友可以参考下
    2023-05-05
  • 深入理解python Matplotlib库的高级特性

    深入理解python Matplotlib库的高级特性

    Matplotlib是一款极其强大的Python数据可视化库,这篇文章中,我们将深入讨论 Matplotlib 的一些高级特性,包括对象导向接口、自定义颜色映射和样式、动态图形等,感兴趣的小伙伴跟着小编一起来探讨吧
    2023-07-07
  • jmeter执行python脚本的实现示例

    jmeter执行python脚本的实现示例

    本文主要介绍了jmeter执行python脚本的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-05-05
  • python 获取剪切板内容的两种方法

    python 获取剪切板内容的两种方法

    这篇文章主要介绍了python 获取剪切板内容的两种方法,帮助大家更好的理解和学习python,感兴趣的朋友可以了解下
    2020-11-11
  • 如何基于opencv实现简单的数字识别

    如何基于opencv实现简单的数字识别

    现在很多场景需要使用的数字识别,比如银行卡识别,以及车牌识别等,在AI领域有很多图像识别算法,大多是居于opencv 或者谷歌开源的tesseract 识别,下面这篇文章主要给大家介绍了关于如何基于opencv实现简单的数字识别,需要的朋友可以参考下
    2021-09-09
  • Python 正则表达式中re.group()使用小结

    Python 正则表达式中re.group()使用小结

    正则表达式是在处理字符串时非常有用的工具,而re.group()是在匹配到的文本中提取特定分组内容的方法之一,这篇文章主要介绍了Python 正则表达式之re.group()用法,需要的朋友可以参考下
    2024-01-01
  • django中path和url函数的具体使用

    django中path和url函数的具体使用

    本文主要介绍了django中path和url函数的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03

最新评论