在Python 2.7即将停止支持时,我们为你带来了一份python 3.x迁移指南

 更新时间:2018年01月30日 11:00:41   作者:Alex Rogozhnikov  
这篇文章主要介绍了在Python 2.7即将停止支持时我们为你准备了一份python 3.x迁移指南的相关资料,需要的朋友可以参考下

目前,Python 科学栈中的所有主要项目都同时支持 Python 3.x 和 Python 2.7,不过,这种情况很快即将结束。去年 11 月,Numpy 团队的一份声明引发了数据科学社区的关注: 这一科学计算库即将放弃对于 Python 2.7 的支持 ,全面转向 Python 3。Numpy 并不是唯一宣称即将放弃 Python 旧版本支持的工具,pandas 与 Jupyter notebook 等很多产品也在即将放弃支持的名单之中。对于数据科学开发者而言,如何将已有项目从 Python 2 转向 Python 3 成为了正在面临的重大问题。来自莫斯科大学的 Alex Rogozhnikov 博士为我们整理了一份代码迁移指南。

Python 3 功能简介

Python 是机器学习和其他科学领域中的主流语言,我们通常需要使用它处理大量的数据。Python 兼容多种深度学习框架,且具备很多优秀的工具来执行数据预处理和可视化。

但是,Python 2 和 Python 3 长期共存于 Python 生态系统中,很多数据科学家仍然使用 Python 2。2019 年底,Numpy 等很多科学计算工具都将停止支持 Python 2,而 2018 年后 Numpy 的所有新功能版本将只支持 Python 3。

为了使 Python 2 向 Python 3 的转换更加轻松,我收集了一些 Python 3 的功能,希望对大家有用。

使用 pathlib 更好地处理路径

pathlib 是 Python 3 的默认模块,帮助避免使用大量的 os.path.joins:

from pathlib import Path
dataset = 'wiki_images'
datasets_root = Path('/path/to/datasets/')
train_path = datasets_root / dataset / 'train'
test_path = datasets_root / dataset / 'test'
for image_path in train_path.iterdir():
 with image_path.open() as f: # note, open is a method of Path object
 # do something with an image

Python 2 总是试图使用字符串级联(准确,但不好),现在有了 pathlib,代码安全、准确、可读性强。

此外,pathlib.Path 具备大量方法,这样 Python 新用户就不用每个方法都去搜索了:

p.exists()
p.is_dir()
p.parts()
p.with_name('sibling.png') # only change the name, but keep the folder
p.with_suffix('.jpg') # only change the extension, but keep the folder and the name
p.chmod(mode)
p.rmdir()

pathlib 会节约大量时间,详见:

文档:https://docs.python.org/3/library/pathlib.html

参考信息:https://pymotw.com/3/pathlib/

类型提示(Type hinting)成为语言的一部分

PyCharm 中的类型提示示例:

Python 不只是适合脚本的语言,现在的数据流程还包括大量步骤,每一步都包括不同的框架(有时也包括不同的逻辑)。

类型提示被引入 Python,以帮助处理越来越复杂的项目,使机器可以更好地进行代码验证。而之前需要不同的模块使用自定义方式在文档字符串中指定类型(注意:PyCharm 可以将旧的文档字符串转换成新的类型提示)。

下列代码是一个简单示例,可以处理不同类型的数据(这就是我们喜欢 Python 数据栈之处)。

def repeat_each_entry(data):
 """ Each entry in the data is doubled 
 """
 index = numpy.repeat(numpy.arange(len(data)), 2)
 return data[index]

上述代码适用于 numpy.array(包括多维)、astropy.Table 和 astropy.Column、bcolz、cupy、mxnet.ndarray 等。
该代码同样可用于 pandas.Series,但是方式是错误的:

repeat_each_entry(pandas.Series(data=[0, 1, 2], index=[3, 4, 5])) # returns Series with Nones inside

这是一个两行代码。想象一下复杂系统的行为多么难预测,有时一个函数就可能导致错误的行为。明确了解哪些类型方法适合大型系统很有帮助,它会在函数未得到此类参数时给出提醒。

def repeat_each_entry(data: Union[numpy.ndarray, bcolz.carray]):

如果你有一个很棒的代码库,类型提示工具如 MyPy 可能成为集成流程中的一部分。不幸的是,提示没有强大到足以为 ndarrays/tensors 提供细粒度类型,但是或许我们很快就可以拥有这样的提示工具了,这将是 DS 的伟大功能。

类型提示 → 运行时的类型检查

默认情况下,函数注释不会影响代码的运行,不过它也只能帮你指出代码的意图。

但是,你可以在运行时中使用 enforce 等工具强制进行类型检查,这可以帮助你调试代码(很多情况下类型提示不起作用)。

@enforce.runtime_validation
def foo(text: str) -> None:
 print(text)
foo('Hi') # ok
foo(5) # fails
@enforce.runtime_validation
def any2(x: List[bool]) -> bool:
 return any(x)
any ([False, False, True, False]) # True
any2([False, False, True, False]) # True
any (['False']) # True
any2(['False']) # fails
any ([False, None, "", 0]) # False
any2([False, None, "", 0]) # fails

函数注释的其他用处

如前所述,注释不会影响代码执行,而且会提供一些元信息,你可以随意使用。

例如,计量单位是科学界的一个普遍难题,astropy 包提供一个简单的装饰器(Decorator)来控制输入量的计量单位,并将输出转换成所需单位。

# Python 3
from astropy import units as u
@u.quantity_input()
def frequency(speed: u.meter / u.s, wavelength: u.m) -> u.terahertz:
 return speed / wavelength
frequency(speed=300_000 * u.km / u.s, wavelength=555 * u.nm)
# output: 540.5405405405404 THz, frequency of green visible light

如果你拥有 Python 表格式科学数据(不必要太多),你应该尝试一下 astropy。你还可以定义针对某个应用的装饰器,用同样的方式来控制/转换输入和输出。

通过 @ 实现矩阵乘法

下面,我们实现一个最简单的机器学习模型,即带 L2 正则化的线性回归:

# l2-regularized linear regression: || AX - b ||^2 + alpha * ||x||^2 -> min
# Python 2
X = np.linalg.inv(np.dot(A.T, A) + alpha * np.eye(A.shape[1])).dot(A.T.dot(b))
# Python 3
X = np.linalg.inv(A.T @ A + alpha * np.eye(A.shape[1])) @ (A.T @ b)

下面 Python 3 带有 @ 作为矩阵乘法的符号更具有可读性,且更容易在深度学习框架中转译:因为一些如 X @ W + b[None, :] 的代码在 numpy、cupy、pytorch 和 tensorflow 等不同库下都表示单层感知机。

使用 ** 作为通配符

递归文件夹的通配符在 Python2 中并不是很方便,因此才存在定制的 glob2 模块来克服这个问题。递归 flag 在 Python 3.6 中得到了支持。

import glob
# Python 2
found_images = \
 glob.glob('/path/*.jpg') \
 + glob.glob('/path/*/*.jpg') \
 + glob.glob('/path/*/*/*.jpg') \
 + glob.glob('/path/*/*/*/*.jpg') \
 + glob.glob('/path/*/*/*/*/*.jpg')
# Python 3
found_images = glob.glob('/path/**/*.jpg', recursive=True)

python3 中更好的选择是使用 pathlib:

# Python 3
found_images = pathlib.Path('/path/').glob('**/*.jpg')

Print 在 Python3 中是函数

Python 3 中使用 Print 需要加上麻烦的圆括弧,但它还是有一些优点。

使用文件描述符的简单句法:

print >>sys.stderr, "critical error" # Python 2
print("critical error", file=sys.stderr) # Python 3

在不使用 str.join 下输出 tab-aligned 表格:

# Python 3
print(*array, sep='\t')
print(batch, epoch, loss, accuracy, time, sep='\t')

修改与重新定义 print 函数的输出:

# Python 3
_print = print # store the original print function
def print(*args, **kargs):
 pass # do something useful, e.g. store output to some file

在 Jupyter 中,非常好的一点是记录每一个输出到独立的文档,并在出现错误的时候追踪出现问题的文档,所以我们现在可以重写 print 函数了。

在下面的代码中,我们可以使用上下文管理器暂时重写 print 函数的行为:

@contextlib.contextmanager
def replace_print():
 import builtins
 _print = print # saving old print function
 # or use some other function here
 builtins.print = lambda *args, **kwargs: _print('new printing', *args, **kwargs)
 yield
 builtins.print = _print
with replace_print():
 <code here will invoke other print function>

上面并不是一个推荐的方法,因为它会引起系统的不稳定。

print 函数可以加入列表解析和其它语言构建结构。

# Python 3
result = process(x) if is_valid(x) else print('invalid item: ', x)

f-strings 可作为简单和可靠的格式化

默认的格式化系统提供了一些灵活性,且在数据实验中不是必须的。但这样的代码对于任何修改要么太冗长,要么就会变得很零碎。而代表性的数据科学需要以固定的格式迭代地输出一些日志信息,通常需要使用的代码如下:

# Python 2
print('{batch:3} {epoch:3} / {total_epochs:3} accuracy: {acc_mean:0.4f}±{acc_std:0.4f} time: {avg_time:3.2f}'.format(
 batch=batch, epoch=epoch, total_epochs=total_epochs,
 acc_mean=numpy.mean(accuracies), acc_std=numpy.std(accuracies),
 avg_time=time / len(data_batch)
))
# Python 2 (too error-prone during fast modifications, please avoid):
print('{:3} {:3} / {:3} accuracy: {:0.4f}±{:0.4f} time: {:3.2f}'.format(
 batch, epoch, total_epochs, numpy.mean(accuracies), numpy.std(accuracies),
 time / len(data_batch)
))

样本输出:

120 12 / 300 accuracy: 0.8180±0.4649 time: 56.60

f-strings 即格式化字符串在 Python 3.6 中被引入:

# Python 3.6+
print(f'{batch:3} {epoch:3} / {total_epochs:3} accuracy: {numpy.mean(accuracies):0.4f}±{numpy.std(accuracies):0.4f} time: {time / len(data_batch):3.2f}')

另外,写查询语句时非常方便:

query = f"INSERT INTO STATION VALUES (13, '{city}', '{state}', {latitude}, {longitude})"

「true division」和「integer division」之间的明显区别

对于数据科学来说这种改变带来了便利(但我相信对于系统编程来说不是)。

data = pandas.read_csv('timing.csv')
velocity = data['distance'] / data['time']

Python 2 中的结果依赖于『时间』和『距离』(例如,以米和秒为单位)是否被保存为整数。

在 Python 3 中,结果的表示都是精确的,因为除法的结果是浮点数。

另一个案例是整数除法,现在已经作为明确的运算:

n_gifts = money // gift_price # correct for int and float arguments

注意,该运算可以应用到内建类型和由数据包(例如,numpy 或 pandas)提供的自定义类型。

推荐:Python核心团队计划2020年停止支持Python2,NumPy宣布停止支持计划表

[Python核心团队计划在2020年停止支持Python 2。NumPy项目自2010年以来一直支持Python 2和Python 3,并且发现支持Python 2对我们有限的资源增加了负担;因此,我们最终计划

严格排序

# All these comparisons are illegal in Python 3
3 < '3'
2 < None
(3, 4) < (3, None)
(4, 5) < [4, 5]
# False in both Python 2 and Python 3
(4, 5) == [4, 5]
防止不同类型实例的偶然性的排序。
sorted([2, '1', 3]) # invalid for Python 3, in Python 2 returns [2, 3, '1']
在处理原始数据时帮助发现存在的问题。
旁注:对 None 的合适检查是(两个版本的 Python 都适用):
if a is not None:
 pass
if a: # WRONG check for None
 pass

自然语言处理的 Unicode

s = '您好'
print(len(s))
print(s[:2])

输出:

Python 2: 6\n��
Python 3: 2\n 您好.
x = u'со'
x += 'co' # ok
x += 'со' # fail

Python 2 在此失败了,而 Python 3 可以如期工作(因为我在字符串中使用了俄文字母)。

在 Python 3 中 strs 是 Unicode 字符串,对非英语文本的 NLP 处理更加方便。

还有其它有趣的方面,例如:

'a' < type < u'a' # Python 2: True
'a' < u'a'   # Python 2: False
from collections import Counter
Counter('Möbelstück')
Python 2: Counter({'\xc3': 2, 'b': 1, 'e': 1, 'c': 1, 'k': 1, 'M': 1, 'l': 1, 's': 1, 't': 1, '\xb6': 1, '\xbc': 1})
Python 3: Counter({'M': 1, 'ö': 1, 'b': 1, 'e': 1, 'l': 1, 's': 1, 't': 1, 'ü': 1, 'c': 1, 'k': 1})

这些在 Python 2 里也能正确地工作,但 Python 3 更为友好。

保留词典和**kwargs 的顺序

在 CPython 3.6+ 版本中,字典的默认行为类似于 OrderedDict(在 3.7+版本中已得到保证)。这在字典理解(和其他操作如 json 序列化/反序列化期间)保持顺序。

import json
x = {str(i):i for i in range(5)}
json.loads(json.dumps(x))
# Python 2
{u'1': 1, u'0': 0, u'3': 3, u'2': 2, u'4': 4}
# Python 3
{'0': 0, '1': 1, '2': 2, '3': 3, '4': 4}

它同样适用于**kwargs(在 Python 3.6+版本中):它们的顺序就像参数中显示的那样。当设计数据流程时,顺序至关重要,以前,我们必须以这样繁琐的方式来编写:

from torch import nn
# Python 2
model = nn.Sequential(OrderedDict([
   ('conv1', nn.Conv2d(1,20,5)),
   ('relu1', nn.ReLU()),
   ('conv2', nn.Conv2d(20,64,5)),
   ('relu2', nn.ReLU())
  ]))
# Python 3.6+, how it *can* be done, not supported right now in pytorch
model = nn.Sequential(
 conv1=nn.Conv2d(1,20,5),
 relu1=nn.ReLU(),
 conv2=nn.Conv2d(20,64,5),
 relu2=nn.ReLU())
) 

注意到了吗?名称的唯一性也会被自动检查。

迭代地拆封

# handy when amount of additional stored info may vary between experiments, but the same code can be used in all cases
model_paramteres, optimizer_parameters, *other_params = load(checkpoint_name)
# picking two last values from a sequence
*prev, next_to_last, last = values_history
# This also works with any iterables, so if you have a function that yields e.g. qualities,
# below is a simple way to take only last two values from a list
*prev, next_to_last, last = iter_train(args)

默认的 pickle 引擎为数组提供更好的压缩

# Python 2
import cPickle as pickle
import numpy
print len(pickle.dumps(numpy.random.normal(size=[1000, 1000])))
# result: 23691675
# Python 3
import pickle
import numpy
len(pickle.dumps(numpy.random.normal(size=[1000, 1000])))
# result: 8000162

节省 3 倍空间,而且速度更快。实际上,类似的压缩(不过与速度无关)可以通过 protocol=2 参数来实现,但是用户通常会忽略这个选项(或者根本不知道)。

更安全的解析

labels = <initial_value>
predictions = [model.predict(data) for data, labels in dataset]
# labels are overwritten in Python 2
# labels are not affected by comprehension in Python 3

关于 super()

Python 2 的 super(...)是代码错误中的常见原因。

# Python 2
class MySubClass(MySuperClass):
 def __init__(self, name, **options):
  super(MySubClass, self).__init__(name='subclass', **options)
# Python 3
class MySubClass(MySuperClass):
 def __init__(self, name, **options):
  super().__init__(name='subclass', **options)

关于 super 和方法解析顺序的更多内容,参见 stackoverflow:

https://stackoverflow.com/questions/576169/understanding-python-super-with-init-methods

更好的 IDE 会给出变量注释

在使用 Java、C# 等语言编程的过程中最令人享受的事情是 IDE 可以提供非常好的建议,因为在执行代码之前,所有标识符的类型都是已知的。

而在 Python 中这很难实现,但是注释可以帮助你:

以清晰的形式写下你的期望

从 IDE 获取良好的建议

这是一个带变量注释的 PyCharm 示例。即使你使用的函数不带注释(例如,由于向后兼容性),它也能工作。

多种拆封(unpacking)

在 Python3 中融合两个字典的代码示例:

x = dict(a=1, b=2)
y = dict(b=3, d=4)
# Python 3.5+
z = {**x, **y}
# z = {'a': 1, 'b': 3, 'd': 4}, note that value for `b` is taken from the latter dict.

可以在这个链接中查看 Python2 中的代码对比:https://stackoverflow.com/questions/38987/how-to-merge-two-

dictionaries-in-a-single-expression

aame 方法对于列表(list)、元组(tuple)和集合(set)都是有效的(a、b、c 是任意的可迭代对象):

[*a, *b, *c] # list, concatenating
(*a, *b, *c) # tuple, concatenating
{*a, *b, *c} # set, union

对于*args 和 **kwargs,函数也支持额外的 unpacking:

Python 3.5+
do_something(**{**default_settings, **custom_settings})
# Also possible, this code also checks there is no intersection between keys of dictionaries
do_something(**first_args, **second_args)

只带关键字参数的 API

我们考虑这个代码片段:

model = sklearn.svm.SVC(2, 'poly', 2, 4, 0.5)

很明显,代码的作者还没熟悉 Python 的代码风格(很可能刚从 cpp 和 rust 跳到 Python)。不幸的是,这不仅仅是个人偏好的问题,因为在 SVC 中改变参数的顺序(adding/deleting)会使得代码无效。特别是,sklearn 经常会重排序或重命名大量的算法参数以提供一致的 API。每次重构都可能使代码失效。

在 Python3,库的编写者可能需要使用*以明确地命名参数:

class SVC(BaseSVC):
 def __init__(self, *, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, ... )

现在,用户需要明确规定参数 sklearn.svm.SVC(C=2, kernel='poly', degree=2, gamma=4, coef0=0.5) 的命名。

这种机制使得 API 同时具备了可靠性和灵活性。

小调:math 模块中的常量

# Python 3
math.inf # 'largest' number
math.nan # not a number
max_quality = -math.inf # no more magic initial values!
for model in trained_models:
 max_quality = max(max_quality, compute_quality(model, data)

小调:单精度整数类型

Python 2 提供了两个基本的整数类型,即 int(64 位符号整数)和用于长时间计算的 long(在 C++变的相当莫名其妙)。

Python 3 有一个单精度类型的 int,它包含了长时间的运算。
下面是查看值是否是整数的方法:

isinstance(x, numbers.Integral) # Python 2, the canonical way
isinstance(x, (long, int))  # Python 2
isinstance(x, int)    # Python 3, easier to remember

其他

Enums 有理论价值,但是 字符串输入已广泛应用在 python 数据栈中。 Enums 似乎不与 numpy 交互,并且不一定来自 pandas。

协同程序也非常有希望用于数据流程,但还没有出现大规模应用。

Python 3 有稳定的 ABI

Python 3 支持 unicode(因此ω = Δφ / Δt 也 okay),但你最好使用好的旧的 ASCII 名称
一些库比如 jupyterhub(jupyter in cloud)、django 和新版 ipython 只支持 Python 3,因此对你来讲没用的功能对于你可能只想使用一次的库很有用。

数据科学特有的代码迁移问题(以及如何解决它们)

停止对嵌套参数的支持:

map(lambda x, (y, z): x, z, dict.items())

然而,它依然完美适用于不同的理解:

{x:z for x, (y, z) in d.items()}

通常,理解在 Python 2 和 3 之间可以更好地「翻译」。

map(), .keys(), .values(), .items(), 等等返回迭代器,而不是列表。迭代器的主要问题有: 没有琐碎的分割和 无法迭代两次。 将结果转化为列表几乎可以解决所有问题。

遇到问题请参见 Python 问答:我如何移植到 Python 3?(https://eev.ee/blog/2016/07/31/python-faq-how-do-i-port-to-python-3/

用 python 教机器学习和数据科学的主要问题

课程作者应该首先花时间解释什么是迭代器,为什么它不能像字符串那样被分片/级联/相乘/迭代两次(以及如何处理它)。
我相信大多数课程作者很高兴避开这些细节,但是现在几乎不可能。
结论

Python 2 与 Python 3 共存了近 10 年,时至今日,我们必须要说:是时候转向 Python 3 了。

研究和生产代码应该更短,更易读取,并且在迁移到 Python 3 代码库之后明显更加的安全。

现在大多数库同时支持 2.x 和 3.x 两个版本。但我们不应等到流行工具包开始停止支持 Python 2 才开始行动,提前享受新语言的功能吧。

相关文章

最新评论