使用ElasticSearch6.0快速实现全文搜索功能的示例代码
本文不涉及ElasticSearch具体原理,只记录如何快速的导入mysql中的数据进行全文检索。
工作中需要实现一个搜索功能,并且导入现有数据库数据,组长推荐用ElasticSearch实现,网上翻一通教程,都是比较古老的文章了,无奈只能自己摸索,参考ES的文档,总算是把服务搭起来了,记录下,希望有同样需求的朋友可以少走弯路,能按照这篇教程快速的搭建一个可用的ElasticSearch服务。
ES的搭建
ES搭建有直接下载zip文件,也有docker容器的方式,相对来说,docker更适合我们跑ES服务。可以方便的搭建集群或建立测试环境。这里使用的也是容器方式,首先我们需要一份Dockerfile:
FROM docker.elastic.co/elasticsearch/elasticsearch-oss:6.0.0 # 提交配置 包括新的elasticsearch.yml 和 keystore.jks文件 COPY --chown=elasticsearch:elasticsearch conf/ /usr/share/elasticsearch/config/ # 安装ik RUN ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.0.0/elasticsearch-analysis-ik-6.0.0.zip # 安装readonlyrest RUN ./bin/elasticsearch-plugin install https://github.com/HYY-yu/BezierCurveDemo/raw/master/readonlyrest-1.16.14_es6.0.0.zip USER elasticsearch CMD ./bin/elasticsearch
这里对上面的操作做一下说明:
- 首先在Dockerfile下的同级目录中需要建立一个conf文件夹,保存elasticsearch.yml文件(稍后给出)和keystore.jks。(jks是自签名文件,用于https,如何生成请自行搜索)
- ik是一款很流行的中文分词库,使用它来支持中文搜索。
- readonlyrest是一款开源的ES插件,用于用户管理、安全验证,土豪可以使用ES自带的X-pack包,有更完善的安全功能。
elactic配置 elasticsearch.yml
cluster.name: "docker-cluster" network.host: 0.0.0.0 # minimum_master_nodes need to be explicitly set when bound on a public IP # set to 1 to allow single node clusters # Details: https://github.com/elastic/elasticsearch/pull/17288 discovery.zen.minimum_master_nodes: 1 # 禁止系统对ES交换内存 bootstrap.memory_lock: true http.type: ssl_netty4 readonlyrest: enable: true ssl: enable: true keystore_file: "server.jks" keystore_pass: server key_pass: server access_control_rules: - name: "Block 1 - ROOT" type: allow groups: ["admin"] - name: "User read only - paper" groups: ["user"] indices: ["paper*"] actions: ["indices:data/read/*"] users: - username: root auth_key_sha256: cb7c98bae153065db931980a13bd45ee3a77cb8f27a7dfee68f686377acc33f1 groups: ["admin"] - username: xiaoming auth_key: xiaoming:xiaoming groups: ["user"]
这里bootstrap.memory_lock: true是个坑,禁止交换内存这里文档已经说明了,有的os会在运行时把暂时不用的内存交换到硬盘的一块区域,然而这种行为会让ES的资源占用率飙升,甚至让系统无法响应。
配置文件里已经很明显了,一个root用户属于admin组,而admin有所有权限,xiaoming同学因为在user组,只能访问paper索引,并且只能读取,不能操作。更详细的配置请见:readonlyrest文档
至此,ES的准备工作算是做完了,docker build -t ESImage:tag 一下,docker run -p 9200:9200 ESImage:Tag跑起来。
如果https://127.0.0.1:9200/返回
{ "name": "VaKwrIR", "cluster_name": "docker-cluster", "cluster_uuid": "YsYdOWKvRh2swz907s2m_w", "version": { "number": "6.0.0", "build_hash": "8f0685b", "build_date": "2017-11-10T18:41:22.859Z", "build_snapshot": false, "lucene_version": "7.0.1", "minimum_wire_compatibility_version": "5.6.0", "minimum_index_compatibility_version": "5.0.0" }, "tagline": "You Know, for Search" }
我们本次教程的主角算是出场了,分享几个常用的API调戏调试ES用:
{{url}}替换成你本地的ES地址。
- 查看所有插件:{{url}}/_cat/plugins?v
- 查看所有索引:{{url}}/_cat/indices?v
- 对ES进行健康检查:{{url}}/_cat/health?v
- 查看当前的磁盘占用率:{{url}}/_cat/allocation?v
导入MYSQL数据
这里我使用的是MYSQL数据,其实其它的数据库也是一样,关键在于如何导入,网上教程会推荐Logstash、Beat、ES的mysql插件进行导入,我也都实验过,配置繁琐,文档稀少,要是数据库结构复杂一点,导入是个劳心劳神的活计,所以并不推荐。其实ES在各个语言都有对应的API库,你在语言层面把数据组装成json,通过API库发送到ES即可。流程大致如下:
我使用的是Golang的ES库elastic,其它语言可以去github上自行搜索,操作的方式都是一样的。
接下来使用一个简单的数据库做介绍:
Paper表
id | name |
---|---|
1 | 北京第一小学模拟卷 |
2 | 江西北京通用高考真题 |
Province表
id | name |
---|---|
1 | 北京 |
2 | 江西 |
Paper_Province表
paper_id | province_id |
---|---|
1 | 1 |
2 | 1 |
2 | 2 |
如上,Paper和Province是多对多关系,现在把Paper数据打入ES,,可以按Paper名称模糊搜索,也可通过Province进行筛选。json数据格式如下:
{ "id":1, "name": "北京第一小学模拟卷", "provinces":[ { "id":1, "name":"北京" } ] }
首先准备一份mapping.json文件,这是在ES中数据的存储结构定义,
{ "mappings":{ "docs":{ "include_in_all": false, "properties":{ "id":{ "type":"long" }, "name":{ "type":"text", "analyzer":"ik_max_word" // 使用最大词分词器 }, "provinces":{ "type":"nested", "properties":{ "id":{ "type":"integer" }, "name":{ "type":"text", "index":"false" // 不索引 } } } } } }, "settings":{ "number_of_shards":1, "number_of_replicas":0 } }
需要注意的是取消_all字段,这个默认的_all会收集所有的存储字段,实现无条件限制的搜索,缺点是空间占用大。
shard(分片)数我设置为了1,没有设置replicas(副本),毕竟这不是一个集群,处理的数据也不是很多,如果有大量数据需要处理可以自行设置分片和副本的数量。
首先与ES建立连接,ca.crt与jks自签名有关。当然,在这里我使用InsecureSkipVerify忽略了证书文件的验证。
func InitElasticSearch() { pool := x509.NewCertPool() crt, err0 := ioutil.ReadFile("conf/ca.crt") if err0 != nil { cannotOpenES(err0, "read crt file err") return } pool.AppendCertsFromPEM(crt) tr := &http.Transport{ TLSClientConfig: &tls.Config{RootCAs: pool, InsecureSkipVerify: true}, } httpClient := &http.Client{Transport: tr} //后台构造elasticClient var err error elasticClient, err = elastic.NewClient(elastic.SetURL(MyConfig.ElasticUrl), elastic.SetErrorLog(GetLogger()), elastic.SetGzip(true), elastic.SetHttpClient(httpClient), elastic.SetSniff(false), // 集群嗅探,单节点记得关闭。 elastic.SetScheme("https"), elastic.SetBasicAuth(MyConfig.ElasticUsername, MyConfig.ElasticPassword)) if err != nil { cannotOpenES(err, "search_client_error") return } //elasticClient构造完成 //查询是否有paper索引 exist, err := elasticClient.IndexExists(MyConfig.ElasticIndexName).Do(context.Background()) if err != nil { cannotOpenES(err, "exist_paper_index_check") return } //索引存在且通过完整性检查则不发送任何数据 if exist { if !isIndexIntegrity(elasticClient) { //删除当前索引  准备重建 deleteResponse, err := elasticClient.DeleteIndex(MyConfig.ElasticIndexName).Do(context.Background()) if err != nil || !deleteResponse.Acknowledged { cannotOpenES(err, "delete_index_error") return } } else { return } } //后台查询数据库,发送数据到elasticsearch中 go fetchDBGetAllPaperAndSendToES() }
type PaperSearch struct { PaperId int64 `gorm:"primary_key;column:F_paper_id;type:BIGINT(20)" json:"id"` Name string `gorm:"column:F_name;size:80" json:"name"` Provinces []Province `gorm:"many2many:t_paper_province;" json:"provinces"` // 试卷适用的省份 } func fetchDBGetAllPaperAndSendToES() { //fetch paper var allPaper []PaperSearch GetDb().Table("t_papers").Find(&allPaper) //province for i := range allPaper { var allPro []Province GetDb().Table("t_provinces").Joins("INNER JOIN `t_paper_province` ON `t_paper_province`.`province_F_province_id` = `t_provinces`.`F_province_id`"). Where("t_paper_province.paper_F_paper_id = ?", allPaper[i].PaperId).Find(&allPro) allPaper[i].Provinces = allPro } if len(allPaper) > 0 { //send to es - create index createService := GetElasticSearch().CreateIndex(MyConfig.ElasticIndexName) // 此处的index_default_setting就是上面mapping.json中的内容。 createService.Body(index_default_setting) createResult, err := createService.Do(context.Background()) if err != nil { cannotOpenES(err, "create_paper_index") return } if !createResult.Acknowledged || !createResult.ShardsAcknowledged { cannotOpenES(err, "create_paper_index_fail") } // - send all paper bulkRequest := GetElasticSearch().Bulk() for i := range allPaper { indexReq := elastic.NewBulkIndexRequest().OpType("create").Index(MyConfig.ElasticIndexName).Type("docs"). Id(helper.Int64ToString(allPaper[i].PaperId)). Doc(allPaper[i]) bulkRequest.Add(indexReq) } // Do sends the bulk requests to Elasticsearch bulkResponse, err := bulkRequest.Do(context.Background()) if err != nil { cannotOpenES(err, "insert_docs_error") return } // Bulk request actions get cleared if len(bulkResponse.Created()) != len(allPaper) { cannotOpenES(err, "insert_docs_nums_error") return } //send success } }
跑通上面的代码后,使用{{url}}/_cat/indices?v看看ES中是否出现了新创建的索引,使用{{url}}/papers/_search看看命中了多少文档,如果文档数等于你发送过去的数据量,搜索服务就算跑起来了。
搜索
现在就可以通过ProvinceID和q来搜索试卷,默认按照相关度评分排序。
//q 搜索字符串 provinceID 限定省份id limit page 分页参数 func SearchPaper(q string, provinceId uint, limit int, page int) (list []PaperSearch, totalPage int, currentPage int, pageIsEnd int, returnErr error) { //不满足条件,使用数据库搜索 if !CanUseElasticSearch && !MyConfig.UseElasticSearch { return SearchPaperLocal(q, courseId, gradeId, provinceId, paperTypeId, limit, page) } list = make([]PaperSimple, 0) totalPage = 0 currentPage = page pageIsEnd = 0 returnErr = nil client := GetElasticSearch() if client == nil { return SearchPaperLocal(q, courseId, gradeId, provinceId, paperTypeId, limit, page) } //ElasticSearch有问题,使用数据库搜索 if !isIndexIntegrity(client) { return SearchPaperLocal(q, courseId, gradeId, provinceId, paperTypeId, limit, page) } if !client.IsRunning() { client.Start() } defer client.Stop() q = html.EscapeString(q) boolQuery := elastic.NewBoolQuery() // Paper.name matchQuery := elastic.NewMatchQuery("name", q) //省份 if provinceId > 0 && provinceId != DEFAULT_PROVINCE_ALL { proBool := elastic.NewBoolQuery() tpro := elastic.NewTermQuery("provinces.id", provinceId) proNest := elastic.NewNestedQuery("provinces", proBool.Must(tpro)) boolQuery.Must(proNest) } boolQuery.Must(matchQuery) for _, e := range termQuerys { boolQuery.Must(e) } highligt := elastic.NewHighlight() highligt.Field(ELASTIC_SEARCH_SEARCH_FIELD_NAME) highligt.PreTags(ELASTIC_SEARCH_SEARCH_FIELD_TAG_START) highligt.PostTags(ELASTIC_SEARCH_SEARCH_FIELD_TAG_END) searchResult, err2 := client.Search(MyConfig.ElasticIndexName). Highlight(highligt). Query(boolQuery). From((page - 1) * limit). Size(limit). Do(context.Background()) if err2 != nil { // Handle error GetLogger().LogErr("搜索时出错 "+err2.Error(), "search_error") // Handle error returnErr = errors.New("搜索时出错") } else { if searchResult.Hits.TotalHits > 0 { // Iterate through results for _, hit := range searchResult.Hits.Hits { var p PaperSearch err := json.Unmarshal(*hit.Source, &p) if err != nil { // Deserialization failed GetLogger().LogErr("搜索时出错 "+err.Error(), "search_deserialization_error") returnErr = errors.New("搜索时出错") return } if len(hit.Highlight[ELASTIC_SEARCH_SEARCH_FIELD_NAME]) > 0 { p.Name = hit.Highlight[ELASTIC_SEARCH_SEARCH_FIELD_NAME][0] } list = append(list, p) } count := searchResult.TotalHits() currentPage = page if count > 0 { totalPage = int(math.Ceil(float64(count) / float64(limit))) } if currentPage >= totalPage { pageIsEnd = 1 } } else { // No hits } } return }
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
相关文章
java批量下载将多个文件(minio中存储)压缩成一个zip包代码示例
在Java应用程序中有时我们需要从多个URL地址下载文件,并将这些文件打包成一个Zip文件进行批量处理或传输,这篇文章主要给大家介绍了关于java批量下载将多个文件(minio中存储)压缩成一个zip包的相关资料,需要的朋友可以参考下2023-11-11SpringMVC Restful风格与中文乱码问题解决方案介绍
Restful就是一个资源定位及资源操作的风格,不是标准也不是协议,只是一种风格,是对http协议的诠释,下面这篇文章主要给大家介绍了关于SpringMVC对Restful风格支持的相关资料,需要的朋友可以参考下2022-10-10
最新评论