Tensorflow 自带可视化Tensorboard使用方法(附项目代码)

 更新时间:2018年02月10日 15:43:48   作者:傲慢灬  
这篇文章主要介绍了Tensorflow 自带可视化Tensorboard使用方法(附项目代码),小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

Tensorboard:

如何更直观的观察数据在神经网络中的变化,或是已经构建的神经网络的结构。上一篇文章说到,可以使用matplotlib第三方可视化,来进行一定程度上的可视化。然而Tensorflow也自带了可视化模块Tensorboard,并且能更直观的看见整个神经网络的结构。

上面的结构图甚至可以展开,变成:

使用:

结构图:

with tensorflow .name_scope(layer_name): 

直接使用以上代码生成一个带可展开符号的一个域,并且支持嵌套操作:

with tf.name_scope(layer_name): 
  with tf.name_scope('weights'): 

节点一般是变量或常量,需要加一个“name=‘'”参数,才会展示和命名,如:

with tf.name_scope('weights'): 
  Weights = tf.Variable(tf.random_normal([in_size,out_size])) 

结构图符号及意义:

变量:

变量则可使用Tensorflow.histogram_summary()方法:

tf.histogram_summary(layer_name+"/weights",Weights) #name命名,Weights赋值 

常量:

常量则可使用Tensorflow.scalar_summary()方法:

tf.scalar_summary('loss',loss) #命名和赋值 

展示:

最后需要整合和存储SummaryWriter:

#合并到Summary中 
merged = tf.merge_all_summaries() 
#选定可视化存储目录 
writer = tf.train.SummaryWriter("/目录",sess.graph) 

merged也是需要run的,因此还需要:

result = sess.run(merged) #merged也是需要run的 
  writer.add_summary(result,i) 

执行:

运行后,会在相应的目录里生成一个文件,执行:

tensorboard --logdir="/目录" 

会给出一段网址:

浏览器中打开这个网址即可,因为有兼容问题,firefox并不能很好的兼容,建议使用Chrome。

常量在Event中,结构图在Graphs中,变量在最后两个Tag中。

附项目代码:

项目承接自上一篇文章(已更新至最新Tensorflow版本API r1.2):

import tensorflow as tf  
import numpy as np  
  
def add_layer(inputs,in_size,out_size,n_layer,activation_function=None): #activation_function=None线性函数  
  layer_name="layer%s" % n_layer  
  with tf.name_scope(layer_name):  
    with tf.name_scope('weights'):  
      Weights = tf.Variable(tf.random_normal([in_size,out_size])) #Weight中都是随机变量  
      tf.summary.histogram(layer_name+"/weights",Weights) #可视化观看变量  
    with tf.name_scope('biases'):  
      biases = tf.Variable(tf.zeros([1,out_size])+0.1) #biases推荐初始值不为0  
      tf.summary.histogram(layer_name+"/biases",biases) #可视化观看变量  
    with tf.name_scope('Wx_plus_b'):  
      Wx_plus_b = tf.matmul(inputs,Weights)+biases #inputs*Weight+biases  
      tf.summary.histogram(layer_name+"/Wx_plus_b",Wx_plus_b) #可视化观看变量  
    if activation_function is None:  
      outputs = Wx_plus_b  
    else:  
      outputs = activation_function(Wx_plus_b)  
    tf.summary.histogram(layer_name+"/outputs",outputs) #可视化观看变量  
    return outputs  
  
#创建数据x_data,y_data  
x_data = np.linspace(-1,1,300)[:,np.newaxis] #[-1,1]区间,300个单位,np.newaxis增加维度  
noise = np.random.normal(0,0.05,x_data.shape) #噪点  
y_data = np.square(x_data)-0.5+noise  
  
with tf.name_scope('inputs'): #结构化  
  xs = tf.placeholder(tf.float32,[None,1],name='x_input')  
  ys = tf.placeholder(tf.float32,[None,1],name='y_input')  
  
#三层神经,输入层(1个神经元),隐藏层(10神经元),输出层(1个神经元)  
l1 = add_layer(xs,1,10,n_layer=1,activation_function=tf.nn.relu) #隐藏层  
prediction = add_layer(l1,10,1,n_layer=2,activation_function=None) #输出层  
  
#predition值与y_data差别  
with tf.name_scope('loss'):  
  loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1])) #square()平方,sum()求和,mean()平均值  
  tf.summary.scalar('loss',loss) #可视化观看常量  
with tf.name_scope('train'):  
  train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) #0.1学习效率,minimize(loss)减小loss误差  
  
init = tf.initialize_all_variables()  
sess = tf.Session()  
#合并到Summary中  
merged = tf.summary.merge_all()  
#选定可视化存储目录  
writer = tf.summary.FileWriter("Desktop/",sess.graph)  
sess.run(init) #先执行init  
  
#训练1k次  
for i in range(1000):  
  sess.run(train_step,feed_dict={xs:x_data,ys:y_data})  
  if i%50==0:  
    result = sess.run(merged,feed_dict={xs:x_data,ys:y_data}) #merged也是需要run的  
    writer.add_summary(result,i) #result是summary类型的,需要放入writer中,i步数(x轴) 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python绘制春节烟花的示例代码

    python绘制春节烟花的示例代码

    这篇文章主要介绍了使用python 实现的简单春节烟花效果的示例代码,请注意,运行本文的代码之前,请确保计算机上已经安装了Pygame库,需要的朋友可以参考下
    2024-02-02
  • 使用rpclib进行Python网络编程时的注释问题

    使用rpclib进行Python网络编程时的注释问题

    这篇文章主要介绍了使用rpclib进行Python网络编程时的注释问题,作者讲到了自己在编写服务器时要用unicode注释等需要注意的地方,需要的朋友可以参考下
    2015-05-05
  • python利用xpath爬取网上数据并存储到django模型中

    python利用xpath爬取网上数据并存储到django模型中

    这篇文章主要介绍了python利用xpath爬取网上数据并存储到django模型中,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-02-02
  • python解析xml文件实例分享

    python解析xml文件实例分享

    这篇文章主要介绍了python解析XML文件的方法,大家参考使用吧
    2013-12-12
  • Python reques接口测试框架实现代码

    Python reques接口测试框架实现代码

    这篇文章主要介绍了Python reques接口测试框架实现代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-07-07
  • Python中的startswith和endswith函数使用实例

    Python中的startswith和endswith函数使用实例

    这篇文章主要介绍了Python中的startswith和endswith函数使用实例,特别是endswith函数,有了它,判断文件的扩展名、文件的类型在容易不过了,需要的朋友可以参考下
    2014-08-08
  • 利用Opencv实现图片的油画特效实例

    利用Opencv实现图片的油画特效实例

    这篇文章主要给大家介绍了关于利用Opencv实现图片的油画特效的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02
  • 完美解决keras 读取多个hdf5文件进行训练的问题

    完美解决keras 读取多个hdf5文件进行训练的问题

    这篇文章主要介绍了完美解决keras 读取多个hdf5文件进行训练的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-07-07
  • windows及linux环境下永久修改pip镜像源的方法

    windows及linux环境下永久修改pip镜像源的方法

    不知道有没有人跟我一样,在刚接触Linux时被系统更新源问题搞得晕头转向,不同的Linux更新源配置也是不一样的,另外由于默认安装时的源大都是外国的更新源,速度相对国内会慢很多,接下来本文主要介绍在windows和linux两种系统环境中更新系统源的方法。
    2016-11-11
  • 使用Python对接OpenAi API实现智能QQ机器人的方法

    使用Python对接OpenAi API实现智能QQ机器人的方法

    这篇文章主要介绍了使用Python对接OpenAi API实现智能QQ机器人的方法,主要是提供一个方法思路,可以根据实现代码延申出更多的解决方法,需要的朋友可以参考下
    2023-03-03

最新评论