tensorflow实现KNN识别MNIST
更新时间:2018年03月12日 14:15:19 作者:freedom098
这篇文章主要为大家详细介绍了tensorflow实现KNN识别MNIST,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
KNN算法算是最简单的机器学习算法之一了,这个算法最大的特点是没有训练过程,是一种懒惰学习,这种结构也可以在tensorflow实现。
KNN的最核心就是距离度量方式,官方例程给出的是L1范数的例子,我这里改成了L2范数,也就是我们常说的欧几里得距离度量,另外,虽然是叫KNN,意思是选取k个最接近的元素来投票产生分类,但是这里只是用了最近的那个数据的标签作为预测值了。
__author__ = 'freedom' import tensorflow as tf import numpy as np def loadMNIST(): from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) return mnist def KNN(mnist): train_x,train_y = mnist.train.next_batch(5000) test_x,test_y = mnist.train.next_batch(200) xtr = tf.placeholder(tf.float32,[None,784]) xte = tf.placeholder(tf.float32,[784]) distance = tf.sqrt(tf.reduce_sum(tf.pow(tf.add(xtr,tf.neg(xte)),2),reduction_indices=1)) pred = tf.argmin(distance,0) init = tf.initialize_all_variables() sess = tf.Session() sess.run(init) right = 0 for i in range(200): ansIndex = sess.run(pred,{xtr:train_x,xte:test_x[i,:]}) print 'prediction is ',np.argmax(train_y[ansIndex]) print 'true value is ',np.argmax(test_y[i]) if np.argmax(test_y[i]) == np.argmax(train_y[ansIndex]): right += 1.0 accracy = right/200.0 print accracy if __name__ == "__main__": mnist = loadMNIST() KNN(mnist)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
相关文章
Python中tkinter无法同时显示多个image的解决方法及pack与place解析
这篇文章主要介绍了Python中tkinter无法同时显示多个image的解决方法及pack与place解析,本文给大家分享问题原因解析及解决方案,需要的朋友可以参考下2023-02-02python人工智能tensorflow优化器Optimizer算法汇总
这篇文章主要为大家介绍了python人工智能tensorflowtf优化器Optimizer算法汇总,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪2022-05-05Anaconda+Pycharm环境下的PyTorch配置方法
这篇文章主要介绍了Anaconda+Pycharm环境下的PyTorch配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下2020-03-03python GUI库图形界面开发之PyQt5输入对话框QInputDialog详细使用方法与实例
这篇文章主要介绍了python GUI库图形界面开发之PyQt5输入对话框QInputDialog详细使用方法与实例,需要的朋友可以参考下2020-02-02
最新评论