Django使用Celery异步任务队列的使用

 更新时间:2018年03月13日 09:20:28   作者:MyStitch  
这篇文章主要介绍了Django使用Celery异步任务队列的使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

1 Celery简介

Celery是异步任务队列,可以独立于主进程运行,在主进程退出后,也不影响队列中的任务执行。

任务执行异常退出,重新启动后,会继续执行队列中的其他任务,同时可以缓存停止期间接收的工作任务,这个功能依赖于消息队列(MQ、Redis)。

1.1 Celery原理

Celery的 架构 由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成。

消息中间件:Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括, RabbitMQRedis ,  MongoDB  (experimental), Amazon SQS (experimental),CouchDB (experimental), SQLAlchemy (experimental),Django ORM (experimental), IronMQ。推荐使用:RabbitMQ、Redis作为消息队列。

任务执行单元:Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。

任务结果存储:Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, Redis,memcached, MongoDB,SQLAlchemy, Django ORM,Apache Cassandra, IronCache

1.2Celery适用场景

异步任务处理:例如给注册用户发送短消息或者确认邮件任务。 大型任务:执行时间较长的任务,例如视频和图片处理,添加水印和转码等,需要执行任务时间长。 定时执行的任务:支持任务的定时执行和设定时间执行。例如性能压测定时执行。

 2Celery开发环境准备

 2.1 环境准备

软件名称

版本号

说明

Linux

Centos 6.5(64bit)

操作系统

Python

3.5.2

Django

1.10

Web框架

Celery

4.0.2

异步任务队列

Redis

2.4

消息队列

2.2     Celery安装

使用方法介绍:

Celery的运行依赖消息队列,使用时需要安装redis或者rabbit。

这里我们使用Redis。安装redis库:

sudo yum install redis

启动redis:

sudo service redis start

安装celery库

sudo pip install celery==4.0.2

3Celery单独执行任务

 3.1编写任务

创建task.py文件

说明:这里初始Celery实例时就加载了配置,使用的redis作为消息队列和存储任务结果。

运行celery:

$ celery -A task worker --loglevel=info

看到下面的打印,说明celery成功运行。

3.2 调用任务

直接打开python交互命令行

执行下面代码:

可以celery的窗口看到任务的执行信息

任务执行状态监控和获取结果:

3.3任务调用方法总结

有两种方法:

delay和apply_async ,delay方法是apply_async简化版。

add.delay(2, 2)
add.apply_async((2, 2))
add.apply_async((2, 2), queue='lopri')

delay方法是apply_async简化版本。

apply_async方法是可以带非常多的配置参数,包括指定队列等

Queue 指定队列名称,可以把不同任务分配到不同的队列 3.4     任务状态

每个任务有三种状态:PENDING -> STARTED -> SUCCESS

任务查询状态:res.state

来查询任务的状态

4与Django集成

上面简单介绍了celery异步任务的基本方法,结合我们实际的应用,我们需要与Django一起使用,下面介绍如何与Django结合。

4.1与Django集成方法

与Django集成有两种方法:

  1. Django 1.8 以上版本:与Celery 4.0版本集成
  2. Django 1.8 以下版本:与Celery3.1版本集成,使用django-celery库

今天我们介绍celery4.0 和django 1.8以上版本集成方法。

4.2 创建项目文件

创建一个项目:名字叫做proj

- proj/
 - proj/__init__.py
 - proj/settings.py
 - proj/urls.py
 - proj/wsgi.py
- manage.py

创建一个新的文件: proj/proj/mycelery.py

from __future__ import absolute_import, unicode_literals
import os
from celery import Celery
 
# set the default Django settings module for the 'celery' program.
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'proj.settings')
 
app = Celery('proj')
 
# Using a string here means the worker don't have to serialize
# the configuration object to child processes.
# - namespace='CELERY' means all celery-related configuration keys
# should have a `CELERY_` prefix.
app.config_from_object('django.conf:settings', namespace='CELERY')
 
# Load task modules from all registered Django app configs.
app.autodiscover_tasks()

在proj/proj/__init__.py:添加

from __future__ import absolute_import, unicode_literals
 
# This will make sure the app is always imported when
# Django starts so that shared_task will use this app.
from .mycelery import app as celery_app
 
__all__ = ['celery_app']

4.3 配置Celery

我们在mycelery.py文件中说明celery的配置文件在settings.py中,并且是以CELERY开头。

app.config_from_object('django.conf:settings', namespace='CELERY')

在settings.py文件中添加celery配置:

我们的配置是使用redis作为消息队列,消息的代理和结果都是用redis,任务的序列化使用json格式。

重要:redis://127.0.0.1:6379/0这个说明使用的redis的0号队列,如果有多个celery任务都使用同一个队列,则会造成任务混乱。最好是celery实例单独使用一个队列。

4.4创建APP

创建Django的App,名称为celery_task,在app目录下创建tasks.py文件。

完成后目录结构为:

├── celery_task
│ ├── admin.py
│ ├── apps.py
│ ├── __init__.py
│ ├── migrations
│ │ └── __init__.py
│ ├── models.py
│ ├── tasks.py
│ ├── tests.py
│ └── views.py
├── db.sqlite3
├── manage.py
├── proj
│ ├── celery.py
│ ├── __init__.py
│ ├── settings.py
│ ├── urls.py
│ └── wsgi.py
└── templates

4.5编写task任务

编辑任务文件

tasks.py

在tasks.py文件中添加下面代码

# Create your tasks here
from __future__ import absolute_import, unicode_literals
from celery import shared_task

@shared_task
def add(x, y):
 return x + y
 
@shared_task
def mul(x, y):
 return x * y
 
@shared_task
def xsum(numbers):
 return sum(numbers)

启动celery:celery -A proj.mycelery worker -l info

说明:proj 为模块名称,mycelery 为celery 的实例所在的文件。

启动成功打印:

4.6在views中调用任务

在views中编写接口,实现两个功能:

  1. 触发任务,然后返回任务的结果和任务ID
  2. 根据任务ID查询任务状态

代码如下:

启动django。

新开一个会话启动celery;启动命令为:celery –A proj.mycelery worker –l info

访问 http://127.0.0.1:8000/add ,可以看到返回的结果。

在celery运行的页面,可以看到下面输出:

4.7在views中查询任务状态

有的时候任务执行时间较长,需要查询任务是否执行完成,可以根据任务的id来查询任务状态,根据状态进行下一步操作。

可以看到任务的状态为:SUCCESS

5Celery定时任务

Celery作为异步任务队列,我们可以按照我们设置的时间,定时的执行一些任务,例如每日数据库备份,日志转存等。

Celery的定时任务配置非常简单:

定时任务的配置依然在setting.py文件中。

说明:如果觉得celery 的数据配置文件和Django 的都在setting.py 一个文件中不方便,可以分拆出来,只需要在mycelery.py 的文件中指明即可。

app.config_from_object('django.conf:yoursettingsfile', namespace='CELERY')

5.1任务间隔运行

#每30秒调用task.add
from datetime import timedelta

CELERY_BEAT_SCHEDULE = {
 'add-every-30-seconds': {
  'task': 'tasks.add',
  'schedule': timedelta(seconds=30),
  'args': (16, 16)
 },
}

5.2定时执行

定时每天早上7:30分运行。

注意:设置任务时间时注意时间格式,UTC时间或者本地时间。

#crontab任务
#每天7:30调用task.add
from celery.schedules import crontab

CELERY_BEAT_SCHEDULE = {
 # Executes every Monday morning at 7:30 A.M
 'add-every-monday-morning': {
  'task': 'tasks.add',
  'schedule': crontab(hour=7, minute=30),
  'args': (16, 16),
 },
}

5.3定时任务启动

配置了定时任务,除了worker进程外,还需要启动一个beat进程。

Beat进程的作用就相当于一个定时任务,根据配置来执行对应的任务。

5.3.1  启动beat进程

命令如下:celery -A proj.mycelery beat -l info

5.3.2  启动worker进程

Worker进程启动和前面启动命令一样。celery –A proj.mycelery worker –l info

6 Celery深入

Celery任务支持多样的运行模式:

  1. 支持动态指定并发数 --autoscale=10,3 (always keep 3 processes, but grow to 10 if necessary).
  2. 支持链式任务
  3. 支持Group任务
  4. 支持任务不同优先级
  5. 支持指定任务队列
  6. 支持使用eventlet模式运行worker

例如:指定并发数为1000

celery -A proj.mycelery worker -c 1000

这些可以根据使用的深入自行了解和学习。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python 获取命令行参数内容及参数个数的实例

    Python 获取命令行参数内容及参数个数的实例

    今天小编就为大家分享一篇Python 获取命令行参数内容及参数个数的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • 超级好用的4个Python命令行可视化库

    超级好用的4个Python命令行可视化库

    通常大家都是在自己的电脑上跑程序,直接是可以可视化相应的结果.如果是在服务器上的话,使用终端,是不太方便查看结果. 今天,小F就给大家介绍4个可以在命令行中使用的Python库. 分别是Bashplotlib、tqdm、PrettyTable、Colorama,需要的朋友可以参考下
    2021-06-06
  • Python退出While循环的3种方法举例详解

    Python退出While循环的3种方法举例详解

    在每次循环结束后,我们需要检查循环条件是否满足。如果条件满足,则继续执行循环体内的代码,否则退出循环,这篇文章主要给大家介绍了关于Python退出While循环的3种方法,需要的朋友可以参考下
    2023-10-10
  • 一文掌握Python描述符与装饰器的神奇妙用

    一文掌握Python描述符与装饰器的神奇妙用

    Python 是一种多范式编程语言,具有灵活的特性,其中可调用实例、嵌套函数、描述符和装饰器是其功能强大的特性之一,这些概念对于编写高效、优雅的代码至关重要
    2024-01-01
  • python numpy 一维数组转变为多维数组的实例

    python numpy 一维数组转变为多维数组的实例

    今天小编就为大家分享一篇python numpy 一维数组转变为多维数组的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • python跨文件使用全局变量的实现

    python跨文件使用全局变量的实现

    这篇文章主要介绍了python跨文件使用全局变量的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • opencv改变imshow窗口大小,窗口位置的方法

    opencv改变imshow窗口大小,窗口位置的方法

    下面小编就为大家分享一篇opencv改变imshow窗口大小,窗口位置的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • 使用Python pyglet库编写一个可播放音乐的扬声器类流程详解

    使用Python pyglet库编写一个可播放音乐的扬声器类流程详解

    这篇文章主要介绍了使用Python pyglet库编写一个可播放音乐的扬声器类,Pyglet主要用于创建视频游戏、独立游戏和多媒体应用,它提供了一组用于制作游戏的常用功能,包括图形渲染、声音播放、事件处理等等,需要的朋友可以参考下
    2024-03-03
  • TensorFlow saver指定变量的存取

    TensorFlow saver指定变量的存取

    这篇文章主要为大家详细介绍了TensorFlow saver指定变量的存取,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • Pytorch深度学习之实现病虫害图像分类

    Pytorch深度学习之实现病虫害图像分类

    PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。它具有强大的GPU加速的张量计算和自动求导系统的深度神经网络。本文将介绍如何通过PyTorch实现病虫害图像分类,感兴趣的可以学习一下
    2021-12-12

最新评论