python实现朴素贝叶斯分类器

 更新时间:2018年03月28日 10:10:01   作者:shelmi  
这篇文章主要为大家详细介绍了python实现朴素贝叶斯分类器,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文用的是sciki-learn库的iris数据集进行测试。用的模型也是最简单的,就是用贝叶斯定理P(A|B) = P(B|A)*P(A)/P(B),计算每个类别在样本中概率(代码中是pLabel变量)

以及每个类下每个特征的概率(代码中是pNum变量)。

写得比较粗糙,对于某个类下没有此特征的情况采用p=1/样本数量。

有什么错误有人发现麻烦提出,谢谢。

[python] view plain copy
# -*- coding:utf-8 -*- 
from numpy import * 
from sklearn import datasets 
import numpy as np 
 
class NaiveBayesClassifier(object): 
 
  def __init__(self): 
    self.dataMat = list() 
    self.labelMat = list() 
    self.pLabel = {} 
    self.pNum = {} 
 
  def loadDataSet(self): 
    iris = datasets.load_iris() 
    self.dataMat = iris.data 
    self.labelMat = iris.target 
    labelSet = set(iris.target) 
    labelList = [i for i in labelSet] 
    labelNum = len(labelList) 
    for i in range(labelNum): 
      self.pLabel.setdefault(labelList[i]) 
      self.pLabel[labelList[i]] = np.sum(self.labelMat==labelList[i])/float(len(self.labelMat)) 
 
  def seperateByClass(self): 
    seperated = {} 
    for i in range(len(self.dataMat)): 
      vector = self.dataMat[i] 
      if self.labelMat[i] not in seperated: 
        seperated[self.labelMat[i]] = [] 
      seperated[self.labelMat[i]].append(vector) 
    return seperated 
 
  # 通过numpy array二维数组来获取每一维每种数的概率 
  def getProbByArray(self, data): 
    prob = {} 
    for i in range(len(data[0])): 
      if i not in prob: 
        prob[i] = {} 
      dataSetList = list(set(data[:, i])) 
      for j in dataSetList: 
        if j not in prob[i]: 
          prob[i][j] = 0 
        prob[i][j] = np.sum(data[:, i] == j) / float(len(data[:, i])) 
    prob[0] = [1 / float(len(data[:,0]))] # 防止feature不存在的情况 
    return prob 
 
  def train(self): 
    featureNum = len(self.dataMat[0]) 
    seperated = self.seperateByClass() 
    t_pNum = {} # 存储每个类别下每个特征每种情况出现的概率 
    for label, data in seperated.iteritems(): 
      if label not in t_pNum: 
        t_pNum[label] = {} 
      t_pNum[label] = self.getProbByArray(np.array(data)) 
    self.pNum = t_pNum 
 
  def classify(self, data): 
    label = 0 
    pTest = np.ones(3) 
    for i in self.pLabel: 
      for j in self.pNum[i]: 
        if data[j] not in self.pNum[i][j]: 
          pTest[i] *= self.pNum[i][0][0] 
        else: 
          pTest[i] *= self.pNum[i][j][data[j]] 
    pMax = np.max(pTest) 
    ind = np.where(pTest == pMax) 
    return ind[0][0] 
 
  def test(self): 
    self.loadDataSet() 
    self.train() 
    pred = [] 
    right = 0 
    for d in self.dataMat: 
      pred.append(self.classify(d)) 
    for i in range(len(self.labelMat)): 
      if pred[i] == self.labelMat[i]: 
        right += 1 
    print right / float(len(self.labelMat)) 
 
if __name__ == '__main__': 
  NB = NaiveBayesClassifier() 
  NB.test() 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python操作dict时避免出现KeyError的几种解决方法

    Python操作dict时避免出现KeyError的几种解决方法

    这篇文章主要介绍了Python操作dict时避免出现KeyError的几种解决方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-09-09
  • Python综合应用名片管理系统案例详解

    Python综合应用名片管理系统案例详解

    这篇文章主要介绍了Python综合应用名片管理系统,结合具体案例形式详细分析了Python名片管理系统相关步骤、原理、实现方法与操作注意事项,需要的朋友可以参考下
    2020-01-01
  • keras-siamese用自己的数据集实现详解

    keras-siamese用自己的数据集实现详解

    这篇文章主要介绍了keras-siamese用自己的数据集实现详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Django零基础入门之模板变量详解

    Django零基础入门之模板变量详解

    这篇文章主要介绍了Django零基础入门之模板变量详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-09-09
  • django项目运行因中文而乱码报错的几种情况解决

    django项目运行因中文而乱码报错的几种情况解决

    django是一个不错的WEB开源框架。今天测试,发现有些页面中文乱码,后来发现出现中文乱码还不止一种情况,所以这篇文章主要给大家介绍了关于django项目运行过程中因为中文而导致乱码报错的几种情况的解决方法,需要的朋友可以参考下。
    2017-11-11
  • Python下的subprocess模块的入门指引

    Python下的subprocess模块的入门指引

    这篇文章主要介绍了Python下的subprocess模块的入门指引,subprocess模块被用于Python的多线程编程,需要的朋友可以参考下
    2015-04-04
  • Python代码调试的几种方法总结

    Python代码调试的几种方法总结

    这篇文章主要介绍了Python代码调试的几种方法总结,本文来自于IBM官方网站技术文档,需要的朋友可以参考下
    2015-04-04
  • python 图片验证码代码分享

    python 图片验证码代码分享

    python 图片验证码代码分享,需要的朋友可以参考下
    2012-07-07
  • python神经网络facenet人脸检测及keras实现

    python神经网络facenet人脸检测及keras实现

    这篇文章主要为大家介绍了python神经网络facenet人脸检测及keras实现,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05
  • Python中包的用法及安装

    Python中包的用法及安装

    在本篇文章里小编给大家整理的是关于Python中一些包的基本用处和安装方法,需要的朋友们可以学习参考下。
    2020-02-02

最新评论