Python中的并发处理之asyncio包使用的详解

 更新时间:2018年04月03日 14:33:24   作者:Hanwencheng  
本篇文章主要介绍了Python中的并发处理之asyncio包使用的详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

导语:本文章记录了本人在学习Python基础之控制流程篇的重点知识及个人心得,打算入门Python的朋友们可以来一起学习并交流。

本文重点:

1、了解asyncio包的功能和使用方法;
2、了解如何避免阻塞型调用;
3、学会使用协程避免回调地狱。

一、使用asyncio包做并发编程

1、并发与并行

并发:一次处理多件事。
并行:一次做多件事。
并发用于制定方案,用来解决可能(但未必)并行的问题。并发更好。

2、asyncio概述

了解asyncio的4个特点:

  1. asyncio包使用事件循环驱动的协程实现并发。
  2. 适合asyncio API的协程在定义体中必须使用yield from,而不能使用yield。
  3. 使用asyncio处理的协程,需在定义体上使用@asyncio.coroutine装饰。装饰的功能在于凸显协程,同时当协程不产出值,协程会被垃圾回收。
  4. Python3.4起,asyncio包只直接支持TCP和UDP协议。如果想使用asyncio实现HTTP客户端和服务器时,常使用aiohttp包。

在协程中使用yield from需要注意两点:

  1. 使用yield froml链接的多个协程最终必须由不是协程的调用方驱动,调用方显式或隐式在最外层委派生成器上调用next()函数或 .send()方法。
  2. 链条中最内层的子生成器必须是简单的生成器(只使用yield)或可迭代的对象。

但在asyncio包的API中使用yield from还需注意两个细节:

  1. asyncio包中编写的协程链条始终通过把最外层委派生成器传给asyncio包API中的某个函数驱动,例如loop.run_until_complete()。即不通过调用next()函数或 .send()方法驱动协程。
  2. 编写的协程链条最终通过yield from把职责委托给asyncio包中的某个协程函数或协程方法。即最内层的子生成器是库中真正执行I/O操作的函数,而不是我们自己编写的函数。

实例——通过asyncio包和协程以动画形式显示文本式旋转指针:

import asyncio
import itertools
import sys

@asyncio.coroutine # 交给 asyncio 处理的协程要使用 @asyncio.coroutine 装饰
def spin(msg):
  for char in itertools.cycle('|/-\\'):
    status = char + ' ' + msg
    print(status)
    try:
      yield from asyncio.sleep(.1) # 使用 yield from asyncio.sleep(.1) 代替 time.sleep(.1),这样的休眠不会阻塞事件循环。
    except asyncio.CancelledError: # 如果 spin 函数苏醒后抛出 asyncio.CancelledError 异常,其原因是发出了取消请求,因此退出循环。
      break

@asyncio.coroutine
def slow_function(): # slow_function 函数是协程,在用休眠假装进行 I/O 操作时,使用 yield from 继续执行事件循环。
  # 假装等待I/O一段时间
  yield from asyncio.sleep(3) # yield from asyncio.sleep(3) 表达式把控制权交给主循环,在休眠结束后恢复这个协程。
  return 42

@asyncio.coroutine
def supervisor(): # supervisor 函数也是协程
  spinner = asyncio.async(spin('thinking!')) # asyncio.async(...) 函数排定 spin 协程的运行时间,使用一个 Task 对象包装spin 协程,并立即返回。
  print('spinner object:', spinner)
  result = yield from slow_function() # 驱动 slow_function() 函数。结束后,获取返回值。
# 同时,事件循环继续运行,因为slow_function 函数最后使用 yield from asyncio.sleep(3) 表达式把控制权交回给了主循环。
  spinner.cancel() # Task 对象可以取消;取消后会在协程当前暂停的 yield 处抛出 asyncio.CancelledError 异常。协程可以捕获这个异常,也可以延迟取消,甚至拒绝取消。
  return result

if __name__ == '__main__':
  loop = asyncio.get_event_loop() # 获取事件循环的引用
  result = loop.run_until_complete(supervisor()) # 驱动 supervisor 协程,让它运行完毕;这个协程的返回值是这次调用的返回值。
  loop.close()
  print('Answer:', result)

3、线程与协程对比

线程:调度程序在任何时候都能中断线程。必须记住保留锁。去保护程序中的重要部分,防止多步操作在执行的过程中中断,防止数据处于无效状态。

协程:默认会做好全方位保护,以防止中断。对协程来说无需保留锁,在多个线程之间同步操作,协程自身就会同步,因为在任意时刻只有一个协程运行。

4、从期物、任务和协程中产出

在asyncio包中,期物和协程关系紧密,因为可以使用yield from从asyncio.Future对象中产出结果。这意味着,如果foo是协程函数,抑或是返回Future或Task实例的普通函数,那么可以这样写:res=yield from foo()。这是asyncio包中很多地方可以互换协程与期物的原因之一。

二、避免阻塞型调用

1、有两种方法能避免阻塞型调用中止整个应用程序的进程:

  1. 在单独的线程中运行各个阻塞型操作。
  2. 把每个阻塞型操作转换成非阻塞的异步调用。

使用多线程处理大量连接时将耗费过多的内存,故此通常使用回调来实现异步调用。

2、使用Executor对象防止阻塞事件循环:

使用loop.run_in_executor把阻塞的作业(例如保存文件)委托给线程池做。

@asyncio.coroutine
def download_one(cc, base_url, semaphore, verbose):
  try:
    with (yield from semaphore):
      image = yield from get_flag(base_url, cc)
  except web.HTTPNotFound:
    status = HTTPStatus.not_found
    msg = 'not found'
  except Exception as exc:
    raise FetchError(cc) from exc
  else:
    loop = asyncio.get_event_loop() # 获取事件循环对象的引用
    loop.run_in_executor(None, # None 使用默认的 TrreadPoolExecutor 实例
        save_flag, image, cc.lower() + '.gif') # 传入可调用对象
    status = HTTPStatus.ok
    msg = 'OK'

  if verbose and msg:
    print(cc, msg)

  return Result(status, cc)

asyncio 的事件循环背后维护一个 ThreadPoolExecutor 对象,我们可以调用 run_in_executor 方法, 把可调用的对象发给它执行。

三、从回调到期物和协程

回调地狱:如果一个操作需要依赖之前操作的结果,那就得嵌套回调。

Python 中的回调地狱:

def stage1(response1):
  request2 = step1(response1)
  api_call2(request2, stage2)

def stage2(response2):
  request3 = step2(response2)
  api_call3(request3, stage3)

def stage3(response3):
  step3(response3)

api_call1(request1, step1)

使用 协程 和 yield from 结构做异步编程,无需用回调:

@asyncio.coroutine
def three_stages(request1):
  response1 = yield from api_call1()
  request2 = step1(response1)
  response2 = yield from api_call2(request2)
  request3 = step2(response2)
  response3 = yield from api_call3(request3)
  step3(response3)

loop.create_task(three_stages(request1))
# 协程不能直接调用,必须用事件循环显示指定协程的执行时间,或者在其他排定了执行时间的协程中使用 yield from 表达式把它激活

四、使用asyncio包编写服务器

  1. 使用asyncio包能实现TCP和HTTP服务器
  2. Web服务将成为asyncio包的重要使用场景。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • plotly分割显示mnist的方法详解

    plotly分割显示mnist的方法详解

    这篇文章主要为大家详细介绍了plotly分割显示mnist的方法,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2022-03-03
  • python爬虫利器之requests库的用法(超全面的爬取网页案例)

    python爬虫利器之requests库的用法(超全面的爬取网页案例)

    这篇文章主要介绍了python爬虫利器之requests库的用法(超全面的爬取网页案例),本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-12-12
  • Pyspark读取parquet数据过程解析

    Pyspark读取parquet数据过程解析

    这篇文章主要介绍了pyspark读取parquet数据过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-03-03
  • Pandas 实现分组计数且不计重复

    Pandas 实现分组计数且不计重复

    这篇文章主要介绍了Pandas 实现分组计数且不计重复的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • 深入理解Python中的Contextlib库

    深入理解Python中的Contextlib库

    Python提供了一些内建的库以支持各种常见的编程任务,Contextlib库是其中之一,它提供了一些用于支持上下文管理协议(即with语句)的函数,这篇文章将详细介绍如何使用Contextlib库中的功能,需要的朋友可以参考下
    2023-06-06
  • python基于tkinter点击按钮实现图片的切换

    python基于tkinter点击按钮实现图片的切换

    这篇文章主要介绍了python基于tkinter点击按钮实现图片的切换,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • pyecharts绘制中国2020肺炎疫情地图的实例代码

    pyecharts绘制中国2020肺炎疫情地图的实例代码

    在本篇文章里小编给大家整理的是关于pyecharts绘制中国2020肺炎疫情地图的实例代码内容,有兴趣的朋友们可以测试下。
    2020-02-02
  • pycharm中创建sql文件及模板的过程

    pycharm中创建sql文件及模板的过程

    很多小伙伴刚开始使用pycharm时发现以前的老员工在使用pycharm创建sql文件时会自带文件头模板,例如时间、作者、版本、邮件等信息,这是怎么做到的呢,一起来看一下吧
    2022-07-07
  • Python Pygame实战之打地鼠小游戏

    Python Pygame实战之打地鼠小游戏

    Pygame库是专门为了帮助做出的游戏和其他多媒体应用Python编程语言的一个开放源代码模块。本文将利用Pygame模块制作一个打地鼠的小游戏,快跟随小编一起学习一下吧
    2022-01-01
  • python处理中文编码和判断编码示例

    python处理中文编码和判断编码示例

    在开发自用爬虫过程中,有的网页是utf-8,有的是gb2312,有的是gbk,如果不加处理,采集到的都是乱码,解决的方法是将html处理成统一的utf-8编码
    2014-02-02

最新评论