异步任务队列Celery在Django中的使用方法

 更新时间:2018年06月07日 09:30:08   作者:zni.feng  
对于网站来说,给用户一个较好的体验是很重要的事情,其中最重要的指标就是网站的浏览速度。因此服务端要从各个方面对网站性能进行优化,这篇文章主要介绍了异步任务队列Celery在Django中的使用方法,感兴趣的小伙伴们可以参考一下

前段时间在Django Web平台开发中,碰到一些请求执行的任务时间较长(几分钟),为了加快用户的响应时间,因此决定采用异步任务的方式在后台执行这些任务。在同事的指引下接触了Celery这个异步任务队列框架,鉴于网上关于Celery和Django结合的文档较少,大部分也只是粗粗介绍了大概的流程,在实践过程中还是遇到了不少坑,希望记录下来帮助有需要的朋友。

一、Django中的异步请求

Django Web中从一个http请求发起,到获得响应返回html页面的流程大致如下:http请求发起 -- http handling(request解析) -- url mapping(url正则匹配找到对应的View) -- 在View中进行逻辑的处理、数据计算(包括调用Model类进行数据库的增删改查)--将数据推送到template,返回对应的template/response。

图1. Django架构总览

同步请求:所有逻辑处理、数据计算任务在View中处理完毕后返回response。在View处理任务时用户处于等待状态,直到页面返回结果。

异步请求:View中先返回response,再在后台处理任务。用户无需等待,可以继续浏览网站。当任务处理完成时,我们可以再告知用户。

二、关于Celery

Celery是基于Python开发的一个分布式任务队列框架,支持使用任务队列的方式在分布的机器/进程/线程上执行任务调度。

图2. Celery架构

图2展示的是Celery的架构,它采用典型的生产生-消费者模式,主要由三部分组成:broker(消息队列)、workers(消费者:处理任务)、backend(存储结果)。实际应用中,用户从Web前端发起一个请求,我们只需要将请求所要处理的任务丢入任务队列broker中,由空闲的worker去处理任务即可,处理的结果会暂存在后台数据库backend中。我们可以在一台机器或多台机器上同时起多个worker进程来实现分布式地并行处理任务。

三、Django中Celery的实现

在实际使用过程中,发现在Celery在Django里的实现与其在一般.py文件中的实现还是有很大差别,Django有其特定的使用Celery的方式。这里着重介绍Celery在Django中的实现方法,简单介绍与其在一般.py文件中实现方式的差别。

1. 建立消息队列

首先,我们必须拥有一个broker消息队列用于发送和接收消息。Celery官网给出了多个broker的备选方案:RabbitMQ、Redis、Database(不推荐)以及其他的消息中间件。在官网的强力推荐下,我们就使用RabbitMQ作为我们的消息中间人。在Linux上安装的方式如下:

sudo apt-get install rabbitmq-server

命令执行成功后,rabbitmq-server就已经安装好并运行在后台了。

另外也可以通过命令rabbitmq-server来启动rabbitmq server以及命令rabbitmqctl stop来停止server。

更多的命令可以参考rabbitmq官网的用户手册:https://www.rabbitmq.com/manpages.html

2. 安装django-celery

pip install celery
pip install django-celery

3. 配置settings.py

首先,在Django工程的settings.py文件中加入如下配置代码:

import djcelery
djcelery.setup_loader()
BROKER_URL= 'amqp://guest@localhost//'
CELERY_RESULT_BACKEND = 'amqp://guest@localhost//'

其中,当djcelery.setup_loader()运行时,Celery便会去查看INSTALLD_APPS下包含的所有app目录中的tasks.py文件,找到标记为task的方法,将它们注册为celery task。BROKER_URL和CELERY_RESULT_BACKEND分别指代你的Broker的代理地址以及Backend(result store)数据存储地址。在Django中如果没有设置backend,会使用其默认的后台数据库用来存储数据。注意,此处backend的设置是通过关键字CELERY_RESULT_BACKEND来配置,与一般的.py文件中实现celery的backend设置方式有所不同。一般的.py中是直接通过设置backend关键字来配置,如下所示:

app = Celery('tasks', backend='amqp://guest@localhost//', broker='amqp://guest@localhost//')

然后,在INSTALLED_APPS中加入djcelery:

INSTALLED_APPS = (
  ……  
  'qv',
  'djcelery'
  ……  
)  

4. 在要使用该任务队列的app根目录下(比如qv),建立tasks.py,比如:

在tasks.py中我们就可以编码实现我们需要执行的任务逻辑,在开始处import task,然后在要执行的任务方法开头用上装饰器@task。需要注意的是,与一般的.py中实现celery不同,tasks.py必须建在各app的根目录下,且不能随意命名。

5. 生产任务

在需要执行该任务的View中,通过build_job.delay的方式来创建任务,并送入消息队列。比如:

6. 启动worker的命令

#先启动服务器
python manage.py runserver
#再启动worker 
python manage.py celery worker -c 4 --loglevel=info

四、补充

Django下要查看其他celery的命令,包括参数配置、启动多worker进程的方式都可以通过python manage.py celery --help来查看:

另外,Celery提供了一个工具flower,将各个任务的执行情况、各个worker的健康状态进行监控并以可视化的方式展现,如下图所示:

Django下实现的方式如下: 

1. 安装flower:

pip install flower

2. 启动flower(默认会启动一个webserver,端口为5555):

python manage.py celery flower

3. 进入http://localhost:5555即可查看。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python获取excel内容及相关操作代码实例

    Python获取excel内容及相关操作代码实例

    这篇文章主要介绍了Python获取excel内容及相关操作代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-08-08
  • 探索Python3.4中新引入的asyncio模块

    探索Python3.4中新引入的asyncio模块

    这篇文章主要介绍了Python3.4中新引入的asyncio模块,包括其对端口和服务器等的操作,需要的朋友可以参考下
    2015-04-04
  • Python if 判断语句详解

    Python if 判断语句详解

    这篇文章主要介绍了Python if 判断语句,包括流程控制,顺序结构和分支结构,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-11-11
  • GIt在pyCharm的详细使用教程记录

    GIt在pyCharm的详细使用教程记录

    使用git+pycharm有一段时间了,算是稍有点心得,所以下面这篇文章主要给大家介绍了关于GIt在pyCharm的详细使用的相关资料,文中通过图文介绍的非常详细,需要的朋友可以参考下
    2022-02-02
  • FFT快速傅里叶变换的python实现过程解析

    FFT快速傅里叶变换的python实现过程解析

    这篇文章主要介绍了FFT快速傅里叶变换的python实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-10-10
  • Python中使用PIL库实现图片高斯模糊实例

    Python中使用PIL库实现图片高斯模糊实例

    这篇文章主要介绍了Python中使用PIL库实现图片高斯模糊实例,本文重点在修改了Pil的源码实现可以自定义模糊度,需要的朋友可以参考下
    2015-02-02
  • Python代码的打包与发布详解

    Python代码的打包与发布详解

    这篇文章主要介绍了Python代码的打包与发布的方法,需要的朋友可以参考下
    2014-07-07
  • Python Traceback异常代码排错利器使用指南

    Python Traceback异常代码排错利器使用指南

    这篇文章主要为大家介绍了Python Traceback异常代码排错利器使用指南,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2024-01-01
  • python如何调用百度识图api

    python如何调用百度识图api

    这篇文章主要介绍了python如何调用百度识图api,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-09-09
  • Python使用pyinstaller打包成.exe文件执行后闪退的图文解决办法

    Python使用pyinstaller打包成.exe文件执行后闪退的图文解决办法

    这篇文章主要给大家介绍了关于Python使用pyinstaller打包成.exe文件执行后闪退的图文解决办法,闪退问题通常是由于程序运行过程中出现了未处理的异常或错误,导致程序崩溃,文中通过图文介绍的非常详细,需要的朋友可以参考下
    2023-12-12

最新评论