Python实现多条件筛选目标数据功能【测试可用】
本文实例讲述了Python实现多条件筛选目标数据功能。分享给大家供大家参考,具体如下:
python中提供了一些数据过滤功能,可以使用内建函数,也可以使用循环语句来判断,或者使用pandas库,当然在有些情况下使用pandas是为了提高工作效率。举例如下:
a = [('chic', 'JJ'), ('although', 'IN'), ('menu', 'JJ'), ('items', 'NNS'), ('doesnt', 'JJ'), ('scream', 'NN'), ('french', 'JJ'), ('cuisine', 'NN')]
这里的a为一个list,列表中还有元组。每一个元组由单词和其词性组成,我们要筛选词性为JJ何NN的单词。可以有三种写法:
第一种,使用内建函数filter:
# -*- coding:utf-8 -*- #!python3 a = [('chic', 'JJ'), ('although', 'IN'), ('menu', 'JJ'), ('items', 'NNS'), ('doesnt', 'JJ'), ('scream', 'NN'), ('french', 'JJ'), ('cuisine', 'NN')] def filt_nn(data_text): nn_data = filter(lambda x: x[1] == 'NN'or x[1] == 'JJ', data_text) # print(list(nn_data)) return list(nn_data) print(filt_nn(a))
运行结果:
[('chic', 'JJ'), ('menu', 'JJ'), ('doesnt', 'JJ'), ('scream', 'NN'), ('french', 'JJ'), ('cuisine', 'NN')]
第二种,使用pandas包:
# -*- coding:utf-8 -*- #!python3 import pandas as pd a = [('chic', 'JJ'), ('although', 'IN'), ('menu', 'JJ'), ('items', 'NNS'), ('doesnt', 'JJ'), ('scream', 'NN'), ('french', 'JJ'), ('cuisine', 'NN')] data = pd.DataFrame(a, columns=['word', 'ps']) print(data[data.ps.isin(['JJ', 'NN'])].word)
运行结果:
0 chic
2 menu
4 doesnt
5 scream
6 french
7 cuisine
Name: word, dtype: object
第三种,使用循环:
# -*- coding:utf-8 -*- #!python3 a = [('chic', 'JJ'), ('although', 'IN'), ('menu', 'JJ'), ('items', 'NNS'), ('doesnt', 'JJ'), ('scream', 'NN'), ('french', 'JJ'), ('cuisine', 'NN')] absd = [] for i in a: if i[1] == 'NN' or i[1] == 'JJ': absd.append(i[0]) print(absd)
得到的结果都相同,如下:
['chic', 'menu', 'doesnt', 'scream', 'french', 'cuisine']
虽然结果相同,但是推荐第一、二种方法,因为这两个方法速度更快。
更多关于Python相关内容可查看本站专题:《Python列表(list)操作技巧总结》、《Python字符串操作技巧汇总》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
相关文章
python使用threading.Condition交替打印两个字符
这篇文章主要为大家详细介绍了python使用threading.Condition交替打印两个字符,具有一定的参考价值,感兴趣的小伙伴们可以参考一下2019-05-05PyTorch中torch.nn.functional.cosine_similarity使用详解
在pytorch中可以使用torch.cosine_similarity函数对两个向量或者张量计算余弦相似度,这篇文章主要给大家介绍了关于PyTorch中torch.nn.functional.cosine_similarity使用的相关资料,需要的朋友可以参考下2022-03-03Python爬取用户观影数据并分析用户与电影之间的隐藏信息!
看电影前很多人都喜欢去 『豆瓣』 看影评,所以我爬取44130条 『豆瓣』 的用户观影数据,分析用户之间的关系,电影之间的联系,以及用户和电影之间的隐藏关系,需要的朋友可以参考下2021-06-06
最新评论