Python实现的knn算法示例

 更新时间:2018年06月14日 10:20:50   作者:旭旭_哥  
这篇文章主要介绍了Python实现的knn算法,结合实例形式详细分析了Python实现knn算法的原理与相关操作技巧,并附带给出了statsmodels模块与pandas模块的下载、安装操作方法,需要的朋友可以参考下

本文实例讲述了Python实现的knn算法。分享给大家供大家参考,具体如下:

代码参考机器学习实战那本书:

机器学习实战 (Peter Harrington著) 中文版

机器学习实战 (Peter Harrington著) 英文原版[附源代码]

有兴趣你们可以去了解下

具体代码:

# -*- coding:utf-8 -*-
#! python2
'''''
@author:zhoumeixu
createdate:2015年8月27日
'''
#np.zeros((4,2))
#np.zeros(8).reshape(4,2)
#x=np.array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) np.zeros_like(x)
# 最值和排序:最值有np.max(),np.min() 他们都有axis和out(输出)参数,
# 而通过np.argmax(), np.argmin()可以得到取得最大或最小值时的 下标。
# 排序通过np.sort(), 而np.argsort()得到的是排序后的数据原来位置的下标
# 简单实现knn算法的基本思路
import numpy as np
import operator #运算符操作包
from _ctypes import Array
from statsmodels.sandbox.regression.kernridgeregress_class import plt_closeall
def createDataSet():
 group=np.array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
 labels=['A','A','B','B']
 return group ,labels
group,labels=createDataSet()
def classify0(inx,dataSet,labels,k):
 dataSetSize=dataSet.shape[0]
 diffMat=np.tile(inx,(dataSetSize,1))-dataSet
 sqDiffMat=diffMat**2
 sqDistances=sqDiffMat.sum(axis=1)
 distances=sqDistances**0.5   #计算距离 python中会自动广播的形式
 sortedDistIndicies=distances.argsort() #排序,得到原来数据的在原来所在的下标
 classCount={}
 for i in range(k):
  voteIlabel=labels[sortedDistIndicies[i]] # 计算距离最近的值所在label标签
  classCount[voteIlabel]=classCount.get(voteIlabel,0)+1 # 计算距离最近的值所在label标签,对前k哥最近数据进行累加
 sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True) #排序得到距离k个最近的数所在的标签
 return sortedClassCount[0][0]
if __name__=='__main__':
 print(classify0([0,0],group,labels,4))
# 利用knn算法改进约会网站的配对效果
def file2matrix(filename):
 fr=open(filename)
 arrayOLines=fr.readlines()
 numberOfLines=len(arrayOLines)
 returnMat=np.zeros((numberOfLines,3))
 classLabelVector=[]
 index=0
 for line in arrayOLines:
  line=line.strip()
  listFromLine=line.split('\t')
  returnMat[index,:]=listFromLine[0:3]
  classLabelVector.append(int(listFromLine[-1]))
  index+=1
 return returnMat ,classLabelVector #生成训练数据的array和目标array
path=u'D:\\Users\\zhoumeixu204\\Desktop\\python语言机器学习\\机器学习实战代码 python\\机器学习实战代码\\machinelearninginaction\\Ch02\\'
datingDataMat,datingLabels=file2matrix(path+'datingTestSet2.txt')
import matplotlib
import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.add_subplot(111)
ax.scatter(datingDataMat[:,1],datingDataMat[:,2])
plt.show()
ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*np.array(datingLabels),15*np.array(datingDataMat[:,2]))
plt.show()  #生成训练数据的array和目标array
def autoNorm(dataset):
 minVals=dataset.min(0)
 maxVals=dataset.max(0)
 ranges=maxVals-minVals
 normeDataSet=np.zeros(np.shape(dataset))
 m=dataset.shape[0]
 normDataSet=dataset-np.tile(minVals,(m,1))
 normDataSet=normDataSet/np.tile(ranges,(m,1))
 return normDataSet ,ranges,minVals
normMat,ranges,minVals=autoNorm(datingDataMat)
def datingClassTest():
 hoRatio=0.1
 datingDataMat,datingLabels=file2matrix(path+'datingTestSet2.txt')
 normMat,ranges,minVals=autoNorm(datingDataMat)
 m=normMat.shape[0]
 numTestVecs=int(m*hoRatio)
 errorCount=0.0
 for i in range(numTestVecs):
  classifierResult=classify0(normMat[i,:], normMat[numTestVecs:m,:], datingLabels[numTestVecs:m],3)
  print "the classifier came back with :%d,the real answer is :%d"\
     %(classifierResult,datingLabels[i])
  if classifierResult!=datingLabels[i]:
   errorCount+=1.0
 print "the total error rare is :%f"%(errorCount/float(numTestVecs)) #利用knn算法测试错误率
if __name__=='__main__':
 datingClassTest()
#利用构建好的模型进行预测
def classifyPerson():
 resultList=['not at all','in same doses','in large d oses']
 percentTats=float(raw_input("percentage if time spent playin cideo games:"))
 ffMiles=float(raw_input("frequnet fliter miles earned per year:"))
 iceCream=float(raw_input("liters of ice cream consumed per year:"))
 datingDataMat,datingLabels=file2matrix(path+'datingTestSet2.txt')
 normMat,ranges,minVals=autoNorm(datingDataMat)
 inArr=np.array([ffMiles,percentTats,iceCream])
 classifierResult=classify0((inArr-minVals)/ranges,normMat,datingLabels,3)
 print("you will probably like the person:",resultList[classifierResult-1])
if __name__!='__main__':
 classifyPerson()
#利用knn算法进行手写识别系统验证
path=u'D:\\Users\\zhoumeixu204\\Desktop\\python语言机器学习\\机器学习实战代码 python\\机器学习实战代码\\machinelearninginaction\\Ch02\\'
def img2vector(filename):
 returnVect=np.zeros((1,1024))
 fr=open(filename)
 for i in range(32):
  lineStr=fr.readline()
  for j in range(32):
   returnVect[0,32*i+j]=int(lineStr[j])
 return returnVect
testVector=img2vector(path+'testDigits\\0_13.txt')
print(testVector[0,0:31])
import os
def handwritingClassTest():
 hwLabels=[]
 trainingFileList=os.listdir(path+'trainingDigits')
 m=len(trainingFileList)
 trainingMat=np.zeros((m,1024))
 for i in range(m):
  fileNameStr=trainingFileList[i]
  fileStr=fileNameStr.split('.')[0]
  classNumStr=int(fileStr.split('_')[0])
  hwLabels.append(classNumStr)
  trainingMat[i,:]=img2vector(path+'trainingDigits\\'+fileNameStr)
 testFileList=os.listdir(path+'testDigits')
 errorCount=0.0
 mTest=len(testFileList)
 for j in range(mTest):
  fileNameStr=testFileList[j]
  fileStr=fileNameStr.split('.')[0]
  classNumStr=int(fileNameStr.split('_')[0])
  classNumStr=int(fileStr.split('_')[0])
  vectorUnderTest=img2vector(path+'testDigits\\'+fileNameStr)
  classifierResult=classify0(vectorUnderTest,trainingMat,hwLabels,3)
  print("the classifier canme back with:%d,the real answer is :%d"%(classifierResult,classNumStr))
  if classifierResult!=classNumStr:
   errorCount+=1.0
 print("\nthe total number of errors is :%d"%errorCount)
 print("\n the total error rate is :%f"%(errorCount/float(mTest)))
if __name__=='__main__':
 handwritingClassTest()

运行结果如下图:

 

注:这里使用到了statsmodels模块,可以点击此处本站下载statsmodels安装模块,再进入statsmodels模块所在目录位置,使用:

pip install statsmodels-0.9.0-cp27-none-win32.whl

进行statsmodels模块的安装

同理,出现ImportError: No module named pandas错误提示时,点击此处本站下载pandas模块,再使用

pip install pandas-0.23.1-cp27-none-win32.whl

进行pandas模块的安装

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

  • Django项目中model的数据处理以及页面交互方法

    Django项目中model的数据处理以及页面交互方法

    今天小编就为大家分享一篇Django项目中model的数据处理以及页面交互方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • 在django项目中,如何单独运行某个python文件

    在django项目中,如何单独运行某个python文件

    这篇文章主要介绍了在django项目中单独运行某个python文件的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04
  • Python使用设计模式中的责任链模式与迭代器模式的示例

    Python使用设计模式中的责任链模式与迭代器模式的示例

    这篇文章主要介绍了Python使用设计模式中的责任链模式与迭代器模式的示例,责任链模式与迭代器模式都可以被看作为行为型的设计模式,需要的朋友可以参考下
    2016-03-03
  • Python中FTP服务与SSH登录暴力破解的实现

    Python中FTP服务与SSH登录暴力破解的实现

    本文学习了如何通过 Python 脚本进行 FTP、SSH 服务的登录爆破,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-08-08
  • Flask请求钩子与上下文及异常处理分项精解

    Flask请求钩子与上下文及异常处理分项精解

    这篇文章主要介绍了Flask请求钩子与上下文及异常处理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧
    2022-10-10
  • Python3.6 + TensorFlow 安装配置图文教程(Windows 64 bit)

    Python3.6 + TensorFlow 安装配置图文教程(Windows 64 bit)

    这篇文章主要介绍了Python3.6 + TensorFlow 安装配置的教程(Windows 64 bit),本文通过图文并茂的形式给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-02-02
  • python提取照片坐标信息的实例代码

    python提取照片坐标信息的实例代码

    这篇文章主要介绍了python提取照片坐标信息的实例代码,文中给大家提到了Python利用exifread库来解析照片的经纬度,通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-08-08
  • Python中print和return的作用及区别解析

    Python中print和return的作用及区别解析

    print的作用是输出数据到控制端,就是打印在你能看到的界面上。这篇文章给大家介绍Python中print和return的作用及区别解析,感兴趣的朋友跟随小编一起看看吧
    2019-05-05
  • python中if和elif的区别介绍

    python中if和elif的区别介绍

    这篇文章主要介绍了python中if和elif的区别,下面文章将举多个例子围绕if和eli的相关资料展开内容,需要的朋友可以参考一下,希望对你有所帮助
    2021-11-11
  • Python实现日期判断和加减操作详解

    Python实现日期判断和加减操作详解

    这篇文章主要介绍了如何利用Python实现日期的判断,以及对日期的加减操作,文中的示例代码对我们学习或工作有一定的价值,需要的可以参考一下
    2022-01-01

最新评论