使用Python AIML搭建聊天机器人的方法示例

 更新时间:2018年07月09日 08:59:00   作者:标点符  
这篇文章主要介绍了使用Python AIML搭建聊天机器人的方法示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

AIML全名为Artificial Intelligence Markup Language(人工智能标记语言),是一种创建自然语言软件代理的XML语言,是由RichardS. Wallace 博士和Alicebot开源软件组织于1995-2000年间发明创造的。AIML是一种为了匹配模式和确定响应而进行规则定义的 XML 格式。

AIML的设计目标如下:

  1. AIML应当为大众所易学易会。
  2. AIML应当使最小的概念得以编码使之基于L.I.C.E支持一种刺激-响应学科系统组件。
  3. AIML应当兼容XML。
  4. 书写AIML可处理程序文件应当简单便捷。
  5. AIML对象应当对人而言具有良好的可读性和清晰度。
  6. AIML的设计应当正式而简洁。
  7. AIML应当包含对其他语言的依附性。

关于AIML详细的初级读物,可翻阅Alice Bot's AIML Primer。你同样可以在AIML Wikipedia page了解更多 AIML 的内容以及它能够做什么。借助 Python 的 AIML 包,我们很容易实现人工智能聊天机器人。

1、安装Python aiml库

pip install aiml

2、获取alice资源

Python aiml安装完成后在Python安装目录下的 Lib/site-packages/aiml下会有alice子目录,这个是系统自带的一个简单的语料库。

3、Python下加载alice

取得alice资源之后就可以直接利用Python aiml库加载alice brain了。

# -*- coding: utf-8 -*-
import aiml
import sys
import os
 
 
def get_module_dir(name):
  path = getattr(sys.modules[name], '__file__', None)
  if not path:
    raise AttributeError('module %s has not attribute __file__' % name)
  return os.path.dirname(os.path.abspath(path))
 
 
alice_path = get_module_dir('aiml') + '/alice'
#切换到语料库所在工作目录
os.chdir(alice_path)
 
alice = aiml.Kernel()
alice.learn("startup.xml")
alice.respond('LOAD ALICE')
 
while True:
print alice.respond(raw_input("Enter your message >> "))

上述流程非常的简单,接下来我们要自己从0开始创建自己的机器人。

创建标准启动文件

标准的做法是,创建一个名为std-startup.xml的启动文件,作为加载AIML文件的主入口点。在这个例子中,我们将创建一个基础的文件,它匹配一个模式,并且返回一个相应。我们想要匹配模式load aiml b,然后让它加载我们的aiml大脑作为响应。我们将在一步内创建basic_chat.aiml文件。

<aiml version="1.0.1" encoding="UTF-8">
  <!-- std-startup.xml -->
 
  <!-- Category是一个自动的AIML单元 -->
  <category>
 
    <!-- Pattern用来匹配用户输入 -->
    <!-- 如果用户输入 "LOAD AIML B" -->
    <pattern>LOAD AIML B</pattern>
 
    <!-- Template是模式的响应 -->
    <!-- 这里学习一个aiml文件 -->
    <template>
      <learn>basic_chat.aiml</learn>
      <!-- 你可以在这里添加更多的aiml文件 -->
      <!--<learn>more_aiml.aiml</learn>-->
    </template>
 
  </category>
 
</aiml>

创建一个AIML文件

在上面,我们创建的AIML文件只能处理一个模式:load aiml b。当我们向机器人输入那个命令时,它将会尝试加载basic_chat.aiml。除非我们真的创建了它,否则无效。下面是你可以写进basic_chat.aiml的内容。我们将匹配两个基本的模式和响应。

<aiml version="1.0.1" encoding="UTF-8">
<!-- basic_chat.aiml -->
<aiml>
 
  <category>
    <pattern>HELLO</pattern>
    <template>
      Well, hello!
    </template>
  </category>
 
  <category>
    <pattern>WHAT ARE YOU</pattern>
    <template>
      I'm a bot, silly!
    </template>
  </category>
 
</aiml>

随机响应

你也可以像下面这样添加随机响应。它将在接受到一个以”One time I”开头的消息的时候随机响应。*是一个匹配任何东西的通配符。

  <category>
    <pattern>ONE TIME I *</pattern>
    <template>
      <random>
        <li>Go on.</li>
        <li>How old are you?</li>
        <li>Be more specific.</li>
        <li>I did not know that.</li>
        <li>Are you telling the truth?</li>
        <li>I don't know what that means.</li>
        <li>Try to tell me that another way.</li>
        <li>Are you talking about an animal, vegetable or mineral?</li>
        <li>What is it?</li>
      </random>
    </template>
  </category>

使用已存在的AIML文件

编写你自己的AIML文件是一个很有趣的事,但是它将花费很大的功夫。我觉得它需要大概10,000个模式才会开始变得真实起来。幸运的是,ALICE基金会提供了大量免费的AIML文件。在Alice Bot website上浏览AIML文件。

测试新建的机器人

目前为止,所有 XML 格式的 AIML 文件都准备好了。作为机器人大脑的组成部分,它们都很重要,不过目前它们只是信息(information)而已。机器人需要活过来。你可以借助任何语言定制 AIML。这里还是使用Python。

# -*- coding: utf-8 -*-
import aiml
import os
 
 
mybot_path = './mybot'
#切换到语料库所在工作目录
os.chdir(mybot_path)
 
mybot = aiml.Kernel()
mybot.learn("std-startup.xml")
mybot.respond('load aiml b')
 
while True:
  print mybot.respond(raw_input("Enter your message >> "))

这是我们可以开始的最简单的程序。它创建了一个aiml对象,学习启动文件,然后加载剩余的aiml文件。然后,它已经准备好聊天了,而我们进入了一个不断提示用户消息的无限循环。你将需要输入一个机器人认识的模式。这个模式取决于你加载了哪些AIML文件。我们将启动文件作为一个单独的实体创建,这样,我们之后可以向机器人添加更多的aiml文件,而不需要修改任何程序源码。我们可以在启动xml文件中添加更多的可供学习的文件。

加速Brain加载

当你开始拥有很多AIML文件时,它将花费很长的时间来学习。这就是brain文件从何而来。在机器人学习所有的AIML文件后,它可以直接将它的大脑保存到一个文件中,这个文件将会在后续的运行中动态加速加载时间。

# -*- coding: utf-8 -*-
import aiml
import os
 
 
mybot_path = './mybot'
#切换到语料库所在工作目录
os.chdir(mybot_path)
 
mybot = aiml.Kernel()
 
if os.path.isfile("mybot_brain.brn"):
  mybot.bootstrap(brainFile="mybot_brain.brn")
else:
  mybot.bootstrap(learnFiles="std-startup.xml", commands="load aiml b")
  mybot.saveBrain("mybot_brain.brn")
 
while True:
  print mybot.respond(raw_input("Enter your message >> "))

记住,如果你使用了上面写的brain方法,在运行的时候加载并不会将新增改变保存到brain中。你将需要删除brain文件以便于它在下一次启动的时候重建,或者需要修改代码,使得它在重新加载后的某个时间点保存brain。

增加Python命令

如果你想要为你的机器人提供一些特殊的运行Python函数的命令,那么,你应该为机器人捕获输入消息,然后在将它发送给mybot.respond()之前处理它。在上面的例子中,我们从raw_input中获得了用户的输入。然而,我们可以从任何地方获取输入。可能是一个TCP socket,或者是一个语音识别源码。在它进入到AIML之前处理这个消息。你可能想要在某些特定的消息上跳过AIML处理。

while True:
  message = raw_input("Enter your message >> ")
  if message == "quit":
    exit()
  elif message == "save":
    mybot.saveBrain("bot_brain.brn")
  else:
    bot_response = mybot.respond(message)
    # Do something with bot_response

会话与断言

通过指定一个会话,AIML可以为不同的人剪裁不同的会话。例如,如果某个人告诉机器人,他的名字是Alice,而另一个人告诉机器人他的名字是Bob,机器人可以区分不同的人。为了指定你所使用的会话,将其作为第二个参数传给respond()

sessionId = 12345
mybot.respond(raw_input(">>>"), sessionId)

这对于为每一个客户端定制个性化的对话是很有帮助的。你将必须以某种形式生成自己的会话ID,并且跟踪它。注意,保存brain文件不会保存所有的会话值。

  sessionId = 12345
 
  # 会话信息作为字典获取. 包含输入输出历史,
  # 以及任何已知断言
  sessionData = mybot.getSessionData(sessionId)
 
  # 每一个会话ID需要时一个唯一值。
  # 断言名是机器人在与你的会话中了解到的某些/某个名字 
  # 机器人可能知道,你是"Billy",而你的狗的名字是"Brandy"
  mybot.setPredicate("dog", "Brandy", sessionId)
  clients_dogs_name = mybot.getPredicate("dog", sessionId)
 
  mybot.setBotPredicate("hometown", "127.0.0.1")
  bot_hometown = mybot.getBotPredicate("hometown")

在AIML中,我们可以使用模板中的set响应来设置断言

<aiml version="1.0.1" encoding="UTF-8">
  <category>
   <pattern>MY DOGS NAME IS *</pattern>
   <template>
     That is interesting that you have a dog named <set name="dog"><star/></set>
   </template> 
  </category> 
  <category>
   <pattern>WHAT IS MY DOGS NAME</pattern>
   <template>
     Your dog's name is <get name="dog"/>.
   </template> 
  </category> 
</aiml>

使用上面的AIML,你可以告诉机器人:

My dogs name is Max

而机器人会回答你:

That is interesting that you have a dog named Max

然后,如果你问机器人:

What is my dogs name?

机器人将会回答:

Your dog's name is Max.

aiml可以用来实现对话机器人,但是用于中文有以下问题:

  • 中文规则库较少。规则库相当于对话机器人的“大脑”,一般来说,规则库越丰富,对话机器人的应对就更像人。目前英文的规则库已经很丰富,涵盖面很广,而且是公开可获取的。但公开的中文规则库就基本没有。
  • AIML解释器对中文支持不好。实际上,Python下的Pyaiml模块(解析器)已经能比较好的支持中文,但是也存在以下问题:英文单词间一般都有空格或标点区分,因此具备一种“自然分词”特性,由于中文输入没有以空格分隔的习惯,以上会在实践中造成一些不便。比如要实现有/无空格的输入匹配,就需要在规则库中同时包含这两种模式。

解决方案:

  • 自己搭建语料库(比如从字幕文件中获取训练)
  • 自己中文分词工具(如jieba)

相关开源项目:

https://github.com/leo108/aliceCN
https://github.com/messense/wechat-bot
https://github.com/Program-O/Program-O

参考资料:

http://www.w3ii.com/aiml/aiml_introduction.html
http://www.devdungeon.com/content/ai-chat-bot-python-aiml
http://www.alicebot.org/documentation/aiml-reference.html

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • 基于python图书馆管理系统设计实例详解

    基于python图书馆管理系统设计实例详解

    这篇文章主要介绍了基于python图书馆管理系统设计实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-08-08
  • 浅谈Python中的数据类型

    浅谈Python中的数据类型

    Python很重要的的那几个数据类型:字符串,列表,字典,元组,经常有网友问他们之间重要的区别的是什么?能否举几个例子来说明下!下嘛我们就来探讨下。
    2015-05-05
  • python实现五子棋小游戏

    python实现五子棋小游戏

    这篇文章主要介绍了python实现五子棋小游戏,使用pygame模块编写一个五子棋游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-01-01
  • Python使用pdfplumber库高效解析PDF文件

    Python使用pdfplumber库高效解析PDF文件

    PDF 文件是日常办公和数据处理中常见的文件格式,而 pdfplumber 是一个专为 PDF 文件解析设计的 Python 库,可以轻松提取文本、表格、图像等内容,本文将介绍 pdfplumber 的基本功能、使用方法,以及在实际场景中的应用,需要的朋友可以参考下
    2024-11-11
  • python变量赋值机制踩坑记录

    python变量赋值机制踩坑记录

    这篇文章主要介绍了python变量赋值机制踩坑记录,我们都知道python有深拷贝和浅拷贝,但变量赋值又是什么机制呢?这是个容易被忽略却又极易踩坑的点,下面我们来一探究竟,需要的朋友可以参考一下
    2022-02-02
  • Python错误NameError:name 'X' is not defined的解决方法

    Python错误NameError:name 'X' is not defined的解决方法

    这篇文章主要给大家介绍了关于Python错误NameError:name ‘X‘ is not defined的解决方法,这是最近工作中遇到的一个问题,文中通过实例代码将解决的方法介绍的非常详细,需要的朋友可以参考下
    2023-03-03
  • Python基于win32ui模块创建弹出式菜单示例

    Python基于win32ui模块创建弹出式菜单示例

    这篇文章主要介绍了Python基于win32ui模块创建弹出式菜单,结合实例形式分析了Python使用win32ui模块创建弹出式菜单的具体步骤与相关操作技巧,并附带说明了win32ui模块的安装命令,需要的朋友可以参考下
    2018-05-05
  • rabbitmq(中间消息代理)在python中的使用详解

    rabbitmq(中间消息代理)在python中的使用详解

    这篇文章主要介绍了rabbitmq(中间消息代理)在python中的使用详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-12-12
  • Django跨域请求CSRF的方法示例

    Django跨域请求CSRF的方法示例

    这篇文章主要介绍了Django跨域请求CSRF的方法示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-11-11
  • 利用Python实现颜色色值转换的小工具

    利用Python实现颜色色值转换的小工具

    最近一个朋友说已经转用Zeplin很久了。Zeplin的设计稿展示页面的颜色色值使用十进制的 RGB 表示的,在 Android 中的颜色表示大多情况下都需要十六进制的 RGB 表示。所以想写个工作,当输入十进制的RGB ,得到十六进制的色值,最好可以方便复制。下面来一起看看吧。
    2016-10-10

最新评论