对python sklearn one-hot编码详解

 更新时间:2018年07月10日 11:00:03   作者:HAHAHA-  
今天小编就为大家分享一篇对python sklearn one-hot编码详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

one-hot编码的作用

使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点

将离散特征通过one-hot编码映射到欧式空间,是因为,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。

sklearn的一个例子

from sklearn import preprocessing

enc = preprocessing.OneHotEncoder()

enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])
print(enc.n_values_)//每个特征对应的最大位数

print(enc.transform([[0,1,3]]).toarray())

print(enc.transform([[0,1,1]]).toarray())

上面代码enc.fit()里有一个4行3列的矩阵

1、每一列对应于一个样本的特征序列,即一个样本有三个特征

2、4行表明传入了4个样本

3、观察每一列的值可以知道:第一个特征有两个取值0,1;第二个特征有三个取值0,1,2;第三个特征有4个取值0,1,2,3

4、所以第一个特征的one-hot编码是一个两位的01串,第二个特征是一个三位的01串,第三个特征是一个4位的01串

以上这篇对python sklearn one-hot编码详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

最新评论