Python实现曲线拟合操作示例【基于numpy,scipy,matplotlib库】

 更新时间:2018年07月12日 10:18:14   作者:狐尾鹿  
这篇文章主要介绍了Python实现曲线拟合操作,结合实例形式分析了Python基于numpy,scipy,matplotlib库读取csv数据、计算曲线拟合及图形绘制相关操作技巧,需要的朋友可以参考下

本文实例讲述了Python实现曲线拟合操作。分享给大家供大家参考,具体如下:

这两天学习了用python来拟合曲线。

一、环境配置

本人比较比较懒,所以下载的全部是exe文件来安装,安装按照顺利来安装。自动会找到python的安装路径,一直点下一步就行。还有其他的两种安装方式:一种是解压,一种是pip。我没有尝试,就不乱说八道了。

没有ArcGIS 环境的,可以不看下面这段话了。

在配置环境时遇见一个小波折,就是原先电脑装过ArcGIS10.2 ,所以其会默认安装python2.7,而且python是32位的。且其目录为C:\Python27\ArcGIS10.2,所以引用环境变量时,要注意。并且在其引用的工具包中本身包含numpy,matplotlib的包。还是很方便的。但是因为之前想用PyQT来做曲线拟合的界面,安装QT时总是失败,所以最后放弃使用这个。在安装新的python时注意要把路径写到上面这个路径前面,意思就是说在安装上面的包的时候会找默认python路径。我新安装python路径为C:\Python2,要不然就会找到ArcGIS那个python包路径下了。

1. 安装包

python2.7 (32位)https://www.python.org/downloads/
numpy-1.8.1-win32-superpack-python2.7
scipy-0.15.1-win32-superpack-python2.7
matplotlib-1.3.1.win32-py2.7

安装过程中遇见的问题

提示

numpy是Python的一种开源的数值计算扩展,数学计算很方便。
scipy是一款方便、易于使用、专为科学和工程设计的Python工具包.它包括统计,优化,整合,线性代数模块,傅里叶变换,信号和图像处理,常微分方程求解器等等.这次还没用到,看介绍很强大,是numpy的升级版。

matplotlib是Python的一种开源的扩展可以绘制各种各种的图表。

二、实例

曲线拟合的例子

import matplotlib.pyplot as plt
import math
import numpy as np
import random
import csv
plt.rcParams['font.sans-serif'] = ['SimHei']#设置显示中文
fig = plt.figure()
ax = fig.add_subplot(111)#将画布分割成1行1列,图像画在从左到右从上到下的第1块
#阶数为6阶
order=6
#生成曲线上的各个点
dataMat = np.loadtxt(open("c:\\yandu.csv","rb"),delimiter=",",skiprows=0)
size=dataMat.shape
num=size[0]
trandata=np.transpose(dataMat)#矩阵转置
xa=trandata[0]#得到天数数组(横坐标)
ya=trandata[1]#实测盐度值数组
#数据筛选,去除盐度值为零的,提高拟合精度
i=0
x=[]
y=[]
for yy in ya:
  if yy>0:
    xx=xa[i]
    i+=1
    x.append(xx)
    y.append(yy)
#绘制原始数据
ax.plot(x,y,label=u'原始数据',color='m',linestyle='',marker='.')
#计算多项式
c=np.polyfit(x,y,order)#拟合多项式的系数存储在数组c中
yy=np.polyval(c,x)#根据多项式求函数值
#进行曲线绘制
x_new=np.linspace(0, 365, 2000)
f_liner=np.polyval(c,x_new)
#ax.plot(x,y,color='m',linestyle='',marker='.')
ax.plot(x_new,f_liner,label=u'拟合多项式曲线',color='g',linestyle='-',marker='')
# labels标签设置
ax.set_xlim(0, 366)
ax.set_xlabel(u'天')
ax.set_ylabel(u'盐度')
ax.set_title(u'盐度的日变化', bbox={'facecolor':'0.8', 'pad':5})
ax.legend()
plt.show()

运行结果:

PS:这里再为大家推荐两款相似的在线工具供大家参考:

在线多项式曲线及曲线函数拟合工具:
http://tools.jb51.net/jisuanqi/create_fun

在线绘制多项式/函数曲线图形工具:
http://tools.jb51.net/jisuanqi/fun_draw

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

最新评论