基于DataFrame改变列类型的方法
今天用numpy 的linalg.det()求矩阵的逆的过程中出现了一个错误:
TypeError: No loop matching the specified signature and casting was found for ufunc det
查了半天发现是数据类型的问题,numpy在算逆的时候会先检查一下数据类型是否一致,若不一致就会报错(话说这个错误提示信息也太难理解了,还得看源码o(╯□╰)o)。
由于我的数据是用pandas.DataFrame读取的,所以每一列的数据类型有可能不同。
回头检查一下数据,果然有的是int,有的是float。所以全部改为float64类型。
找到了如下的方法,以及DataFrame数据类型:
DataFrame 类型转换方法—astype()
import pandas as pd df = pd.DataFrame([{'col1':'a', 'col2':'1'}, {'col1':'b', 'col2':'2'}]) print df.dtypes df['col2'] = df['col2'].astype('int') print '-----------' print df.dtypes df['col2'] = df['col2'].astype('float64') print '-----------' print df.dtypes
输出:
col1 object col2 object dtype: object ----------- col1 object col2 int32 dtype: object ----------- col1 object col2 float64 dtype: object
astype()也能一次改变所有数据的类型:
In[30]:a Out[31]: a b c d 0 0.891380 0.442167 -0.539450 1.023458 1 -0.488131 -1.847104 -0.209799 -0.768713 2 1.290434 0.327096 0.358406 0.422209 In[32]:a.astype('int32') Out[32]: a b c d 0 0 0 0 1 1 0 -1 0 0 2 1 0 0 0
附:data type list
Data type Description bool_ Boolean (True or False) stored as a byte int_ Default integer type (same as C long; normally either int64 or int32) intc Identical to C int (normally int32 or int64) intp Integer used for indexing (same as C ssize_t; normally either int32 or int64) int8 Byte (-128 to 127) int16 Integer (-32768 to 32767) int32 Integer (-2147483648 to 2147483647) int64 Integer (-9223372036854775808 to 9223372036854775807) uint8 Unsigned integer (0 to 255) uint16 Unsigned integer (0 to 65535) uint32 Unsigned integer (0 to 4294967295) uint64 Unsigned integer (0 to 18446744073709551615) float_ Shorthand for float64. float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa float64 Double precision float: sign bit, 11 bits exponent, 52 bits mantissa complex_ Shorthand for complex128. complex64 Complex number, represented by two 32-bit floats (real and imaginary components) complex128 Complex number, represented by two 64-bit floats (real and imaginary components)
以上这篇基于DataFrame改变列类型的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
Pandas Groupby之在Python中汇总、聚合和分组数据的示例详解
GroupBy是一个非常简单的概念,我们可以创建一个类别分组,并对这些类别应用一个函数,本文给大家介绍Pandas Groupby之如何在Python中汇总、聚合和分组数据,感兴趣的朋友跟随小编一起看看吧2023-07-07如何在Windows环境下安装PyMySQL(已安装Anaconda)
这篇文章主要介绍了如何在Windows环境下安装PyMySQL问题(已安装Anaconda),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教2023-08-08计算机二级python学习教程(3) python语言基本数据类型
这篇文章主要为大家详细介绍了计算机二级python学习教程的第3篇,python语言基本数据类型,具有一定的参考价值,感兴趣的小伙伴们可以参考一下2019-05-05Python中使用第三方库xlutils来追加写入Excel文件示例
这篇文章主要介绍了Python中使用第三方库xlutils来追加写入Excel文件示例,本文直接给出追加写入示例和追加效果,需要的朋友可以参考下2015-04-04
最新评论