使用tensorflow实现线性回归

 更新时间:2018年09月08日 10:02:43   作者:Missayaa  
这篇文章主要为大家详细介绍了使用tensorflow实现线性回归,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了tensorflow实现线性回归的具体代码,供大家参考,具体内容如下

一、随机生成1000个点,分布在y=0.1x+0.3直线周围,并画出来

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

num_points = 1000
vectors_set = []
for i in range(num_points):
  x1 = np.random.normal(0.0,0.55)
  //设置一定范围的浮动
  y1 = x1*0.1+0.3+np.random.normal(0.0,0.03)
  vectors_set.append([x1,y1])

x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set]

plt.scatter(x_data,y_data,c='r')
plt.show()

二、构造线性回归函数

#生成一维的w矩阵,取值为[-1,1]之间的随机数
w = tf.Variable(tf.random_uniform([1],-1.0,1.0),name='W')
#生成一维的b矩阵,初始值为0
b = tf.Variable(tf.zeros([1]),name='b')
y = w*x_data+b

#均方误差
loss = tf.reduce_mean(tf.square(y-y_data),name='loss')
#梯度下降
optimizer = tf.train.GradientDescentOptimizer(0.5)
#最小化loss
train = optimizer.minimize(loss,name='train')


sess=tf.Session()
init = tf.global_variables_initializer()
sess.run(init)

#print("W",sess.run(w),"b=",sess.run(b),"loss=",sess.run(loss))
for step in range(20):
  sess.run(train)
  print("W=",sess.run(w),"b=",sess.run(b),"loss=",sess.run(loss))

//显示拟合后的直线
plt.scatter(x_data,y_data,c='r')
plt.plot(x_data,sess.run(w)*x_data+sess.run(b))
plt.show()

三、部分训练结果如下:

W= [ 0.10559751] b= [ 0.29925063] loss= 0.000887708
W= [ 0.10417549] b= [ 0.29926425] loss= 0.000884275
W= [ 0.10318361] b= [ 0.29927373] loss= 0.000882605
W= [ 0.10249177] b= [ 0.29928035] loss= 0.000881792
W= [ 0.10200921] b= [ 0.29928496] loss= 0.000881397
W= [ 0.10167261] b= [ 0.29928818] loss= 0.000881205
W= [ 0.10143784] b= [ 0.29929042] loss= 0.000881111
W= [ 0.10127408] b= [ 0.29929197] loss= 0.000881066

拟合后的直线如图所示:

结论:最终w趋近于0.1,b趋近于0.3,满足提前设定的数据分布

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Win10+python3.6+git运行出现问题的解决

    Win10+python3.6+git运行出现问题的解决

    这篇文章主要介绍了Win10+python3.6+git运行出现问题的解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-06-06
  • python实现引用其他路径包里面的模块

    python实现引用其他路径包里面的模块

    这篇文章主要介绍了python实现引用其他路径包里面的模块,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • Pytorch之contiguous的用法

    Pytorch之contiguous的用法

    今天小编就为大家分享一篇Pytorch之contiguous的用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • Python语音识别API实现文字转语音的几种方法

    Python语音识别API实现文字转语音的几种方法

    本文主要介绍了Python语音识别API实现文字转语音的几种方法,文中根据实例编码详细介绍的十分详尽,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-03-03
  • PyQt5 QListWidget选择多项并返回的实例

    PyQt5 QListWidget选择多项并返回的实例

    今天小编就为大家分享一篇PyQt5 QListWidget选择多项并返回的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06
  • ubuntu17.4下为python和python3装上pip的方法

    ubuntu17.4下为python和python3装上pip的方法

    今天小编就为大家分享一篇ubuntu17.4下为python和python3装上pip的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-06-06
  • 使用Pytorch实现two-head(多输出)模型的操作

    使用Pytorch实现two-head(多输出)模型的操作

    这篇文章主要介绍了使用Pytorch实现two-head(多输出)模型的操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • 在MAC上搭建python数据分析开发环境

    在MAC上搭建python数据分析开发环境

    这篇文章主要介绍了在MAC上搭建python数据分析开发环境的相关资料,需要的朋友可以参考下
    2016-01-01
  • Python中动态创建类实例的方法

    Python中动态创建类实例的方法

    在Java中我们可以通过反射来根据类名创建类实例,那么在Python我们怎么实现类似功能呢?其实在Python有一个builtin函数import,我们可以使用这个函数来在运行时动态加载一些模块
    2017-03-03
  • Python调用VBA实现保留原始样式的表格合并方法

    Python调用VBA实现保留原始样式的表格合并方法

    本文主要介绍了Python调用VBA实现保留原始样式的表格合并方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-01-01

最新评论