numpy 对矩阵中Nan的处理:采用平均值的方法
更新时间:2018年10月30日 09:49:09 作者:蓝鲸123
今天小编就为大家分享一篇numpy 对矩阵中Nan的处理:采用平均值的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
尽管我们可以将所有的NaN替换成0,但是由于并不知道这些值的意义,所以这样做是个下策。如果它们是开氏温度,那么将它们置成0这种处理策略就太差劲了。
下面我们用平均值来代替缺失值,平均值根据那些非NaN得到。
from numpy import * datMat = mat([[1,2,3],[4,Nan,6]]) numFeat = shape(datMat)[1] for i in range(numFeat): meanVal = mean(datMat[nonzero(~isnan(datMat[:,i].A))[0],i]) #values that are not NaN (a number) datMat[nonzero(isnan(datMat[:,i].A))[0],i] = meanVal #set NaN values to mean
以上这篇numpy 对矩阵中Nan的处理:采用平均值的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
Python调用C++,通过Pybind11制作Python接口
今天小编就为大家分享一篇关于Python调用C++,通过Pybind11制作Python接口,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧2018-10-10python错误:AttributeError: ''module'' object has no attribute
这篇文章主要介绍了python错误:AttributeError: 'module' object has no attribute 'setdefaultencoding'问题的解决方法,需要的朋友可以参考下2014-08-08Python 解决logging功能使用过程中遇到的一个问题
这篇文章主要介绍了Python 解决logging功能使用过程中遇到的一个问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2021-04-04
最新评论