对python中的乘法dot和对应分量相乘multiply详解
更新时间:2018年11月14日 10:12:52 作者:CS青雀
今天小编就为大家分享一篇对python中的乘法dot和对应分量相乘multiply详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
向量点乘 (dot) 和对应分量相乘 (multiply) :
>>> a array([1, 2, 3]) >>> b array([ 1., 1., 1.]) >>> np.multiply(a,b) array([ 1., 2., 3.]) >>> np.dot(a,b) 6.0
矩阵乘法 (dot) 和对应分量相乘 (multiply) :
>>> c matrix([[1, 2, 3]]) >>> d matrix([[ 1., 1., 1.]]) >>> np.multiply(c,d) matrix([[ 1., 2., 3.]]) >>> np.dot(c,d) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: shapes (1,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)
写代码过程中,*表示对应分量相乘 (multiply) :
>>> a*b array([ 1., 2., 3.]) >>> c*d Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\ProgramData\Anaconda3\lib\site-packages\numpy\matrixlib\defmatrix.py", line 343, in __mul__ return N.dot(self, asmatrix(other)) ValueError: shapes (1,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)
以上这篇对python中的乘法dot和对应分量相乘multiply详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
Python3 使用map()批量的转换数据类型,如str转float的实现
今天小编就为大家分享一篇Python3 使用map()批量的转换数据类型,如str转float的实现,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2019-11-11pytorch.range()和pytorch.arange()的区别及说明
这篇文章主要介绍了pytorch.range()和pytorch.arange()的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教2023-08-08Anaconda安装pytorch及配置PyCharm 2021环境
小编使用的是python3.8版本,为了防止访问量过大导致http连接失败,所以采用本地安装,具体安装方法本文给大家详细介绍,在文章底部给大家提到了PyCharm 2021配置环境的方法,感兴趣的朋友一起看看吧2021-06-06
最新评论