使用python绘制3维正态分布图的方法

 更新时间:2018年12月29日 10:32:38   作者:liangyhgood  
今天小编就为大家分享一篇使用python绘制3维正态分布图的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

今天使用python画了几个好玩的3D展示图,现在分享给大家。

先贴上图片

python绘制3维正态分布图

python绘制3维正态分布图

python绘制3维正态分布图

使用的python工具包为:

from matplotlib import pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

在贴代码之前,有必要从整体上了解这些图是如何画出来的。可以把上面每一个3D图片理解成一个长方体。输入数据是三维的,x轴y轴和z轴。在第三个图片里面有x、y和z坐标的标识。在第三张图片中,我们可以理解为,z是随着x和y变化的函数。就像一个人在山丘地区走动一样,其中x和y表示的是方向,z表示的这个人在上坡还是下坡。第二张图片的中间那个,其实是一个3维的正态分布图。

具体的公式为:

python绘制3维正态分布图

上面的是2维的,即只有x和y,如果是三维的话,需要一点变形,只需要在上面的公式基础之上把exp()里面改变为:exp(-((x-u)^2 + (y - u)^2)/(2q^2)), 这里的u表示平均值,q表示标准差。这样变化之后,z = f(x, y)。这就是z值的公式了,表示的是z值随着x和y值的变化而变化的函数。

下面贴一下代码

这是第二张图片的代码。

from matplotlib import pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure()
ax = Axes3D(fig)
len = 8;
step = 0.4;


def build_layer(z_value):
 x = np.arange(-len, len, step);
 y = np.arange(-len, len, step);
 z1 = np.full(x.size, z_value/2)
 z2 = np.full(x.size, z_value/2)
 z1, z2 = np.meshgrid(z1, z2)
 z = z1 + z2;

 x, y = np.meshgrid(x, y)
 return (x, y, z);

def build_gaussian_layer(mean, standard_deviation):
 x = np.arange(-len, len, step);
 y = np.arange(-len, len, step);
 x, y = np.meshgrid(x, y);
 z = np.exp(-((y-mean)**2 + (x - mean)**2)/(2*(standard_deviation**2)))
 z = z/(np.sqrt(2*np.pi)*standard_deviation);
 return (x, y, z);

# 具体函数方法可用 help(function) 查看,如:help(ax.plot_surface)
x1, y1, z1 = build_layer(0.2);
ax.plot_surface(x1, y1, z1, rstride=1, cstride=1, color='green')

x5, y5, z5 = build_layer(0.15);
ax.plot_surface(x5, y5, z5, rstride=1, cstride=1, color='pink')

# x2, y2, z2 = build_layer(-0.26);
# ax.plot_surface(x2, y2, z2, rstride=1, cstride=1, color='yellow')
#
# x6, y6, z6 = build_layer(-0.22);
# ax.plot_surface(x6, y6, z6, rstride=1, cstride=1, color='pink')

# x4, y4, z4 = build_layer(0);
# ax.plot_surface(x4, y4, z4, rstride=1, cstride=1, color='purple')

x3, y3, z3 = build_gaussian_layer(0, 1)
ax.plot_surface(x3, y3, z3, rstride=1, cstride=1, cmap='rainbow')
plt.show()


这是第三张图片的代码

import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d

x, y = np.mgrid[-1:1:20j, -1:1:20j]
z = x * np.exp(-x ** 2 - y ** 2)

ax = plt.subplot(111, projection='3d')
ax.plot_surface(x, y, z, rstride=2, cstride=1, cmap=plt.cm.coolwarm, alpha=0.8)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')

plt.show()

以上这篇使用python绘制3维正态分布图的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python实现PDF转为Excel的示例讲解

    Python实现PDF转为Excel的示例讲解

    这篇文章主要为大家详细介绍了在Python中将PDF表格转换为Excel文件的解决方案,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-11-11
  • Python实现iOS自动化打包详解步骤

    Python实现iOS自动化打包详解步骤

    这篇文章主要介绍了Python实现iOS自动化打包详解步骤,文中通过示例代码以及图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2018-10-10
  • python画图中文不显示问题的解决方法

    python画图中文不显示问题的解决方法

    python中绘图时如果标签或者标题是中文,最后绘出来的图中的文字会被方框替代,下面这篇文章主要给大家介绍了关于python画图中文不显示问题的解决方法,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-06-06
  • 使用pyscript在网页中撰写Python程式的方法

    使用pyscript在网页中撰写Python程式的方法

    本文主要介绍了使用pyscript在网页中撰写Python程式的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-05-05
  • 解决pyinstaller打包exe可执行文件后运行找不到pandas或者XXX模块

    解决pyinstaller打包exe可执行文件后运行找不到pandas或者XXX模块

    这篇文章主要介绍了解决pyinstaller打包exe可执行文件后运行找不到pandas或者XXX模块问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-11-11
  • Python自动化办公之Word文档的创建与生成

    Python自动化办公之Word文档的创建与生成

    这篇文章主要为大家详细介绍了如何通过python脚本来自动生成一个 word文档,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
    2022-05-05
  • Python Excel处理库openpyxl详解

    Python Excel处理库openpyxl详解

    这篇文章主要介绍了Python Excel处理库openpyxl详解,需要的朋友可以参考下
    2021-05-05
  • 深入解析Python中的__builtins__内建对象

    深入解析Python中的__builtins__内建对象

    __builtins__ 是内建模块__builtin__中的对象,使用Python中的内建函数时会通过__builtins__引导,这里我们就来深入解析Python中的__builtins__内建对象,需要的朋友可以参考下
    2016-06-06
  • Python实现k-means算法

    Python实现k-means算法

    这篇文章主要为大家详细介绍了Python实现k-means算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-02-02
  • Python 二分查找之bisect库的使用详解

    Python 二分查找之bisect库的使用详解

    。二分查找是一种在有序列表中查找某一特定元素的搜索算法,bisect 库是 Python 标准库中的一部分,它提供了二分查找的功能,这篇文章主要介绍了Python 二分查找之bisect库的使用,需要的朋友可以参考下
    2023-03-03

最新评论