Python+OpenCV感兴趣区域ROI提取方法
更新时间:2019年01月10日 11:09:24 作者:xinyu3307
今天小编就为大家分享一篇Python+OpenCV感兴趣区域ROI提取方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
方法一:使用轮廓
步骤1
"""src为原图""" ROI = np.zeros(src.shape, np.uint8) #感兴趣区域ROI proimage = src.copy() #复制原图 """提取轮廓""" proimage=cv2.cvtColor(proimage,cv2.COLOR_BGR2GRAY) #转换成灰度图 proimage=cv2.adaptiveThreshold(proimage,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,7,7) proimage,contours,hierarchy=cv2.findContours(proimage,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_NONE) #提取所有的轮廓
步骤2
"""ROI提取""" cv2.drawContours(ROI, contours, 1,(255,255,255),-1) #ROI区域填充白色,轮廓ID1 ROI=cv2.cvtColor(ROI,cv2.COLOR_BGR2GRAY) #转换成灰度图 ROI=cv2.adaptiveThreshold(ROI,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY_INV,7,7) #自适应阈值化 imgroi= cv2.bitwise_and(ROI,proimage) #图像交运算 ,获取的是原图处理——提取轮廓后的ROI 2.#imgroi = cv2.bitwise_and(src,src,mask=ROI) 3.#imgroi = ROI & src 无需灰度+阈值,获取的是原图中的ROI
方法二
img1 = cv2.imread('roi.jpg') roi = img1[0:rows, 0:cols ]
以上这篇Python+OpenCV感兴趣区域ROI提取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
python根据完整路径获得盘名/路径名/文件名/文件扩展名的方法
这篇文章主要介绍了python根据完整路径获得盘名,路径名,文件名,文件扩展名的代码,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下2020-04-04一篇文章入门Python生态系统(Python新手入门指导)
原文写于2011年末,虽然文中关于Python 3的一些说法可以说已经不成立了,但是作为一篇面向从其他语言转型到Python的程序员来说,本文对Python的生态系统还是做了较为全面的介绍2015-12-12关于pycharm python3.7成功安装dlib库的问题
这篇文章主要介绍了pycharm python3.7成功安装dlib库的解决方法,本文分步骤给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下2021-12-12
最新评论