python调用opencv实现猫脸检测功能
Python 小猫检测,通过调用opencv自带的猫脸检测的分类器进行检测。
分类器有两个:haarcascade_frontalcatface.xml和
haarcascade_frontalcatface_extended.xml。可以在opencv的安装目录下找到
D:\Program Files\OPENCV320\opencv\sources\data\haarcascades
小猫检测代码为:
1. 直接读取图片调用
import cv2 image = cv2.imread("cat_04.png") gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # load the cat detector Haar cascade, then detect cat faces # in the input image detector = cv2.CascadeClassifier("haarcascade_frontalcatface.xml") #haarcascade_frontalcatface_extended.xml rects = detector.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=10, minSize=(100, 100)) # loop over the cat faces and draw a rectangle surrounding each print (enumerate(rects)) for (i, (x, y, w, h)) in enumerate(rects): cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2) cv2.putText(image, "Cat #{}".format(i + 1), (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 0, 255), 2) print (i, x,y,w,h) # show the detected cat faces cv2.imshow("Cat Faces", image) cv2.waitKey(1)
检测效果:
2. 通过命令控制符调用
也可以通过调用argparse库,进行整体调用
新建cat_detect.py文件
# import the necessary packages import argparse import cv2 # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="path to the input image") ap.add_argument("-c", "--cascade", default="haarcascade_frontalcatface_extended.xml", help="path to cat detector haar cascade") args = vars(ap.parse_args()) #"haarcascade_frontalcatface_extended.xml", # load the input image and convert it to grayscale #image = cv2.imread(args["image"]) image = cv2.imread(args["image"]) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # load the cat detector Haar cascade, then detect cat faces # in the input image detector = cv2.CascadeClassifier(args["cascade"]) rects = detector.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=10, minSize=(120, 120)) # cat good # loop over the cat faces and draw a rectangle surrounding each print (enumerate(rects)) for (i, (x, y, w, h)) in enumerate(rects): cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2) cv2.putText(image, "cat #{}".format(i + 1), (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 0, 255), 2) # show the detected cat faces cv2.imshow("Cat Faces", image) cv2.waitKey(0)
通过“命令控制符”调用
cmd cd E:\WORK\py\detectCat E:\WORK\py\detectCat>python cat_detector.py --image cat_07.png
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
相关文章
python Seaborn绘制统计图全面指南(直方图散点图小提琴图热力图相关系数图多张合并)
这篇文章主要介绍了python Seaborn绘制统计图全面指南,包括直方图,散点图,小提琴图,热力图,相关系数图及多张图合并的实现示例,有需要的朋友可以借鉴参考下,希望能够有所帮助2024-01-01详解Python之数据序列化(json、pickle、shelve)
本篇文章主要介绍了Python之数据序列化,本节要介绍的就是Python内置的几个用于进行数据序列化的模块,有兴趣的可以了解一下。2017-03-03
最新评论