SQL语句执行深入讲解(MySQL架构总览->查询执行流程->SQL解析顺序)

 更新时间:2019年01月25日 11:00:03   作者:AnnsShadoW  
这篇文章主要给大家介绍了SQL语句执行的相关内容,文中一步步给大家深入的讲解,包括MySQL架构总览->查询执行流程->SQL解析顺序,需要的朋友可以参考下

前言:

一直是想知道一条SQL语句是怎么被执行的,它执行的顺序是怎样的,然后查看总结各方资料,就有了下面这一篇博文了。

本文将从MySQL总体架构--->查询执行流程--->语句执行顺序来探讨一下其中的知识。

一、MySQL架构总览:

架构最好看图,再配上必要的说明文字。

下图根据参考书籍中一图为原本,再在其上添加上了自己的理解。

 

从上图中我们可以看到,整个架构分为两层,上层是MySQLD的被称为的‘SQL Layer',下层是各种各样对上提供接口的存储引擎,被称为‘Storage Engine Layer'。其它各个模块和组件,从名字上就可以简单了解到它们的作用,这里就不再累述了。

二、查询执行流程

下面再向前走一些,容我根据自己的认识说一下查询执行的流程是怎样的:

1.连接

  1.1客户端发起一条Query请求,监听客户端的‘连接管理模块'接收请求

  1.2将请求转发到‘连接进/线程模块'

  1.3调用‘用户模块'来进行授权检查

  1.4通过检查后,‘连接进/线程模块'从‘线程连接池'中取出空闲的被缓存的连接线程和客户端请求对接,如果失败则创建一个新的连接请求

2.处理

  2.1先查询缓存,检查Query语句是否完全匹配,接着再检查是否具有权限,都成功则直接取数据返回

  2.2上一步有失败则转交给‘命令解析器',经过词法分析,语法分析后生成解析树

  2.3接下来是预处理阶段,处理解析器无法解决的语义,检查权限等,生成新的解析树

  2.4再转交给对应的模块处理

  2.5如果是SELECT查询还会经由‘查询优化器'做大量的优化,生成执行计划

  2.6模块收到请求后,通过‘访问控制模块'检查所连接的用户是否有访问目标表和目标字段的权限

  2.7有则调用‘表管理模块',先是查看table cache中是否存在,有则直接对应的表和获取锁,否则重新打开表文件

  2.8根据表的meta数据,获取表的存储引擎类型等信息,通过接口调用对应的存储引擎处理

  2.9上述过程中产生数据变化的时候,若打开日志功能,则会记录到相应二进制日志文件中

3.结果

  3.1Query请求完成后,将结果集返回给‘连接进/线程模块'

  3.2返回的也可以是相应的状态标识,如成功或失败等

  3.3‘连接进/线程模块'进行后续的清理工作,并继续等待请求或断开与客户端的连接

一图小总结

 

三、SQL解析顺序

接下来再走一步,让我们看看一条SQL语句的前世今生。

首先看一下示例语句

SELECT DISTINCT
 < select_list >
FROM
 < left_table > < join_type >
JOIN < right_table > ON < join_condition >
WHERE
 < where_condition >
GROUP BY
 < group_by_list >
HAVING
 < having_condition >
ORDER BY
 < order_by_condition >
LIMIT < limit_number >

然而它的执行顺序是这样的

FROM <left_table>
ON <join_condition>
<join_type> JOIN <right_table>
WHERE <where_condition>
GROUP BY <group_by_list>
HAVING <having_condition>
SELECT 
DISTINCT <select_list>
ORDER BY <order_by_condition>
LIMIT <limit_number>

虽然自己没想到是这样的,不过一看还是很自然和谐的,从哪里获取,不断的过滤条件,要选择一样或不一样的,排好序,那才知道要取前几条呢。

既然如此了,那就让我们一步步来看看其中的细节吧。

准备工作

1.创建测试数据库

create database testQuery

2.创建测试表

CREATE TABLE table1
(
 uid VARCHAR(10) NOT NULL,
 name VARCHAR(10) NOT NULL,
 PRIMARY KEY(uid)
)ENGINE=INNODB DEFAULT CHARSET=UTF8;

CREATE TABLE table2
(
 oid INT NOT NULL auto_increment,
 uid VARCHAR(10),
 PRIMARY KEY(oid)
)ENGINE=INNODB DEFAULT CHARSET=UTF8;

3.插入数据

INSERT INTO table1(uid,name) VALUES('aaa','mike'),('bbb','jack'),('ccc','mike'),('ddd','mike');

INSERT INTO table2(uid) VALUES('aaa'),('aaa'),('bbb'),('bbb'),('bbb'),('ccc'),(NULL);

4.最后想要的结果

SELECT
 a.uid,
 count(b.oid) AS total
FROM
 table1 AS a
LEFT JOIN table2 AS b ON a.uid = b.uid
WHERE
 a. NAME = 'mike'
GROUP BY
 a.uid
HAVING
 count(b.oid) < 2
ORDER BY
 total DESC
LIMIT 1;

!现在开始SQL解析之旅吧!

1. FROM

当涉及多个表的时候,左边表的输出会作为右边表的输入,之后会生成一个虚拟表VT1。

(1-J1)笛卡尔积

计算两个相关联表的笛卡尔积(CROSS JOIN) ,生成虚拟表VT1-J1。

mysql> select * from table1,table2;
+-----+------+-----+------+
| uid | name | oid | uid |
+-----+------+-----+------+
| aaa | mike | 1 | aaa |
| bbb | jack | 1 | aaa |
| ccc | mike | 1 | aaa |
| ddd | mike | 1 | aaa |
| aaa | mike | 2 | aaa |
| bbb | jack | 2 | aaa |
| ccc | mike | 2 | aaa |
| ddd | mike | 2 | aaa |
| aaa | mike | 3 | bbb |
| bbb | jack | 3 | bbb |
| ccc | mike | 3 | bbb |
| ddd | mike | 3 | bbb |
| aaa | mike | 4 | bbb |
| bbb | jack | 4 | bbb |
| ccc | mike | 4 | bbb |
| ddd | mike | 4 | bbb |
| aaa | mike | 5 | bbb |
| bbb | jack | 5 | bbb |
| ccc | mike | 5 | bbb |
| ddd | mike | 5 | bbb |
| aaa | mike | 6 | ccc |
| bbb | jack | 6 | ccc |
| ccc | mike | 6 | ccc |
| ddd | mike | 6 | ccc |
| aaa | mike | 7 | NULL |
| bbb | jack | 7 | NULL |
| ccc | mike | 7 | NULL |
| ddd | mike | 7 | NULL |
+-----+------+-----+------+
rows in set (0.00 sec)

(1-J2)ON过滤

基于虚拟表VT1-J1这一个虚拟表进行过滤,过滤出所有满足ON 谓词条件的列,生成虚拟表VT1-J2。

注意:这里因为语法限制,使用了'WHERE'代替,从中读者也可以感受到两者之间微妙的关系;

mysql> SELECT
 -> *
 -> FROM
 -> table1,
 -> table2
 -> WHERE
 -> table1.uid = table2.uid
 -> ;
+-----+------+-----+------+
| uid | name | oid | uid |
+-----+------+-----+------+
| aaa | mike | 1 | aaa |
| aaa | mike | 2 | aaa |
| bbb | jack | 3 | bbb |
| bbb | jack | 4 | bbb |
| bbb | jack | 5 | bbb |
| ccc | mike | 6 | ccc |
+-----+------+-----+------+
rows in set (0.00 sec)

(1-J3)添加外部列

如果使用了外连接(LEFT,RIGHT,FULL),主表(保留表)中的不符合ON条件的列也会被加入到VT1-J2中,作为外部行,生成虚拟表VT1-J3。

mysql> SELECT
 -> *
 -> FROM
 -> table1 AS a
 -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid;
+-----+------+------+------+
| uid | name | oid | uid |
+-----+------+------+------+
| aaa | mike | 1 | aaa |
| aaa | mike | 2 | aaa |
| bbb | jack | 3 | bbb |
| bbb | jack | 4 | bbb |
| bbb | jack | 5 | bbb |
| ccc | mike | 6 | ccc |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
rows in set (0.00 sec)

下面从网上找到一张很形象的关于‘SQL JOINS'的解释图,如若侵犯了你的权益,请劳烦告知删除,谢谢。

 

2. WHERE

对VT1过程中生成的临时表进行过滤,满足WHERE子句的列被插入到VT2表中。

注意:

此时因为分组,不能使用聚合运算;也不能使用SELECT中创建的别名;

与ON的区别:

如果有外部列,ON针对过滤的是关联表,主表(保留表)会返回所有的列;

如果没有添加外部列,两者的效果是一样的;

应用:

对主表的过滤应该放在WHERE;

对于关联表,先条件查询后连接则用ON,先连接后条件查询则用WHERE;

mysql> SELECT
 -> *
 -> FROM
 -> table1 AS a
 -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
 -> WHERE
 -> a. NAME = 'mike';
+-----+------+------+------+
| uid | name | oid | uid |
+-----+------+------+------+
| aaa | mike | 1 | aaa |
| aaa | mike | 2 | aaa |
| ccc | mike | 6 | ccc |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
rows in set (0.00 sec)

3. GROUP BY

这个子句会把VT2中生成的表按照GROUP BY中的列进行分组。生成VT3表。

注意:

其后处理过程的语句,如SELECT,HAVING,所用到的列必须包含在GROUP BY中,对于没有出现的,得用聚合函数;

原因:

GROUP BY改变了对表的引用,将其转换为新的引用方式,能够对其进行下一级逻辑操作的列会减少;

我的理解是:

根据分组字段,将具有相同分组字段的记录归并成一条记录,因为每一个分组只能返回一条记录,除非是被过滤掉了,而不在分组字段里面的字段可能会有多个值,多个值是无法放进一条记录的,所以必须通过聚合函数将这些具有多值的列转换成单值;

mysql> SELECT
 -> *
 -> FROM
 -> table1 AS a
 -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
 -> WHERE
 -> a. NAME = 'mike'
 -> GROUP BY
 -> a.uid;
+-----+------+------+------+
| uid | name | oid | uid |
+-----+------+------+------+
| aaa | mike | 1 | aaa |
| ccc | mike | 6 | ccc |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
rows in set (0.00 sec)

4. HAVING

这个子句对VT3表中的不同的组进行过滤,只作用于分组后的数据,满足HAVING条件的子句被加入到VT4表中。

mysql> SELECT
 -> *
 -> FROM
 -> table1 AS a
 -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
 -> WHERE
 -> a. NAME = 'mike'
 -> GROUP BY
 -> a.uid
 -> HAVING
 -> count(b.oid) < 2;
+-----+------+------+------+
| uid | name | oid | uid |
+-----+------+------+------+
| ccc | mike | 6 | ccc |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
rows in set (0.00 sec)

5. SELECT

这个子句对SELECT子句中的元素进行处理,生成VT5表。

(5-J1)计算表达式 计算SELECT 子句中的表达式,生成VT5-J1

(5-J2)DISTINCT

寻找VT5-1中的重复列,并删掉,生成VT5-J2

如果在查询中指定了DISTINCT子句,则会创建一张内存临时表(如果内存放不下,就需要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT5是一样的,不同的是对进行DISTINCT操作的列增加了一个唯一索引,以此来除重复数据。

mysql> SELECT
 -> a.uid,
 -> count(b.oid) AS total
 -> FROM
 -> table1 AS a
 -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
 -> WHERE
 -> a. NAME = 'mike'
 -> GROUP BY
 -> a.uid
 -> HAVING
 -> count(b.oid) < 2;
+-----+-------+
| uid | total |
+-----+-------+
| ccc |  1 |
| ddd |  0 |
+-----+-------+
rows in set (0.00 sec)

6.ORDER BY

从VT5-J2中的表中,根据ORDER BY 子句的条件对结果进行排序,生成VT6表。

注意:

唯一可使用SELECT中别名的地方;

mysql> SELECT
 -> a.uid,
 -> count(b.oid) AS total
 -> FROM
 -> table1 AS a
 -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
 -> WHERE
 -> a. NAME = 'mike'
 -> GROUP BY
 -> a.uid
 -> HAVING
 -> count(b.oid) < 2
 -> ORDER BY
 -> total DESC;
+-----+-------+
| uid | total |
+-----+-------+
| ccc |  1 |
| ddd |  0 |
+-----+-------+
rows in set (0.00 sec)

7.LIMIT

LIMIT子句从上一步得到的VT6虚拟表中选出从指定位置开始的指定行数据。

注意:

offset和rows的正负带来的影响;

当偏移量很大时效率是很低的,可以这么做:

采用子查询的方式优化,在子查询里先从索引获取到最大id,然后倒序排,再取N行结果集

采用INNER JOIN优化,JOIN子句里也优先从索引获取ID列表,然后直接关联查询获得最终结果

mysql> SELECT
 -> a.uid,
 -> count(b.oid) AS total
 -> FROM
 -> table1 AS a
 -> LEFT JOIN table2 AS b ON a.uid = b.uid
 -> WHERE
 -> a. NAME = 'mike'
 -> GROUP BY
 -> a.uid
 -> HAVING
 -> count(b.oid) < 2
 -> ORDER BY
 -> total DESC
 -> LIMIT 1;
+-----+-------+
| uid | total |
+-----+-------+
| ccc |  1 |
+-----+-------+
row in set (0.00 sec)

至此SQL的解析之旅就结束了,上图总结一下:

 

参考书籍:

  • 《MySQL性能调优与架构实践》
  • 《MySQL技术内幕:SQL编程》

尾声:

  嗯,到这里这一次的深入了解之旅就差不多真的结束了,虽然也不是很深入,只是一些东西将其东拼西凑在一起而已,参考了一些以前看过的书籍,大师之笔果然不一样。而且在这过程中也是get到了蛮多东西的,最重要的是更进一步意识到,计算机软件世界的宏大呀~

  另由于本人才疏学浅,其中难免存在纰漏错误之处,若发现劳烦告知修改,感谢~

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对脚本之家的支持。

相关文章

  • MySQL子查询的空值问题解决

    MySQL子查询的空值问题解决

    本文主要介绍了MySQL子查询的空值问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-06-06
  • mysql报错:1406 Data too long for column问题的多种解决方案

    mysql报错:1406 Data too long for colu

    这篇文章给大家介绍了多种解决mysql报错:1406, Data too long for column的解决方法,如果有遇到相同问题的朋友可以参考阅读本文,对解决问题有一定的帮助,需要的朋友可以参考下
    2023-09-09
  • Mysql效率优化定位较低sql的两种方式

    Mysql效率优化定位较低sql的两种方式

    通过慢查询日志定位那些执行效率较低的 SQL 语句,用 --log-slow-queries[=file_name] 选项启动时, mysqld 会 写一个包含所有执行时间超过 long_query_time 秒的 SQL 语句的日志文件,通过查看这个日志文件定位效率较低的 SQL
    2015-10-10
  • MySQL的慢日志线上问题及优化方案

    MySQL的慢日志线上问题及优化方案

    给大家详细分析了MySQL慢日志线上问题分析及功能优化方案,需要的朋友跟着学习下吧。
    2017-12-12
  • 详解MySQL分组链接的使用技巧

    详解MySQL分组链接的使用技巧

    本篇文章主要针对MYSQL中分组以及4种链接做了详细的分析,有助于大家对这2项MYSQL功能有深入的理解,参考学习下吧。
    2017-12-12
  • 千万级用户系统SQL调优实战分享

    千万级用户系统SQL调优实战分享

    这篇文章主要介绍了千万级用户系统SQL调优实战分享,用户日活百万级,注册用户千万级,而且若还没有进行分库分表,则该DB里的用户表可能就一张,单表上千万的用户数据,下面我们就来学习如何让优化,需要的朋友可以参考一下
    2022-03-03
  • 使用mydumper多线程备份MySQL数据库

    使用mydumper多线程备份MySQL数据库

    MySQL在备份方面包含了自身的mysqldump工具,但其只支持单线程工作,这就使得它无法迅速的备份数据。而 mydumper作为一个实用工具,能够良好支持多线程工作,这使得它在处理速度方面十倍于传统的
    2013-11-11
  • mysql 5.7版本修改密码的简单方法

    mysql 5.7版本修改密码的简单方法

    这篇文章主要介绍了mysql 5.7版本修改密码的简单方法,需要的朋友可以参考下
    2017-07-07
  • 将MySQL help contents的内容有层次的输出方法推荐

    将MySQL help contents的内容有层次的输出方法推荐

    如何将MySQL help contents的内容有层次的输出呢?下面小编就为大家带来一篇将MySQL help contents的内容有层次的输出方法推荐。小编觉得挺不错的,现在分享给大家,给大家一个参考。一起跟随小编过来看看吧
    2016-03-03
  • 阿里云服务器新建用户具体方法

    阿里云服务器新建用户具体方法

    本文包括了新建服务器用户和新建MySQL用户的方法,有需要的朋友可以参考一下
    2013-09-09

最新评论