Python常见的pandas用法demo示例

 更新时间:2019年03月16日 11:47:02   作者:xuejianbest  
这篇文章主要介绍了Python常见的pandas用法,结合实例形式总结分析了Python使用pandas模块的常见操作技巧与相关注意事项,需要的朋友可以参考下

本文实例总结了Python常见的pandas用法。分享给大家供大家参考,具体如下:

import numpy as np
import pandas as pd

s = pd.Series([1,3,6, np.nan, 44, 1]) #定义一个序列。 序列就是一列内容,每一行有一个index值
print(s)
print(s.index)

0     1.0
1     3.0
2     6.0
3     NaN
4    44.0
5     1.0
dtype: float64
RangeIndex(start=0, stop=6, step=1)

dates = pd.date_range('20180101', periods=6)
print(dates)

DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
               '2018-01-05', '2018-01-06'],
              dtype='datetime64[ns]', freq='D')

df1 = pd.DataFrame(np.arange(12).reshape(3,4)) #定义DataFrame,可以看作一个有index和colunms的矩阵
print(df)

   0  1   2   3
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11

df2 = pd.DataFrame(np.random.randn(6,4), index=dates, columns=['a', 'b', 'c', 'd']) #np.random.randn(6,4)生成6行4列矩阵
print(df)

                   a         b         c         d
2018-01-01  0.300675  1.769383  1.244406 -1.058294
2018-01-02  0.832666  2.216755  0.178716 -0.156828
2018-01-03  1.314190 -0.866199  0.836150  1.001026
2018-01-04 -1.671724  1.147406 -0.148676 -0.272555
2018-01-05  1.146664  2.022861 -1.833995 -0.627568
2018-01-06 -0.192242  1.517676  0.756707  0.058869

df = pd.DataFrame({'A':1.0,
          'B':pd.Timestamp('20180101'),
          'C':pd.Series(1, index=list(range(4)), dtype='float32'),
          'D':np.array([3] * 4, dtype='int32'),
          'E':pd.Categorical(['test', 'train', 'test', 'train']),
          'F':'foo'}) #按照给出的逐列定义df

print(df)
print(df.dtypes)

     A          B    C  D      E    F
0  1.0 2018-01-01  1.0  3   test  foo
1  1.0 2018-01-01  1.0  3  train  foo
2  1.0 2018-01-01  1.0  3   test  foo
3  1.0 2018-01-01  1.0  3  train  foo
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object

#df的行、列、值
print(df.index)
print(df.columns)
print(df.values)

Int64Index([0, 1, 2, 3], dtype='int64')
Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')
[[1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'test' 'foo']
 [1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'train' 'foo']
 [1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'test' 'foo']
 [1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'train' 'foo']]

print(df.describe()) #统计
print(df.T) #转置

         A    C    D
count  4.0  4.0  4.0
mean   1.0  1.0  3.0
std    0.0  0.0  0.0
min    1.0  1.0  3.0
25%    1.0  1.0  3.0
50%    1.0  1.0  3.0
75%    1.0  1.0  3.0
max    1.0  1.0  3.0
                     0                    1                    2  \
A                    1                    1                    1
B  2018-01-01 00:00:00  2018-01-01 00:00:00  2018-01-01 00:00:00
C                    1                    1                    1
D                    3                    3                    3
E                 test                train                 test
F                  foo                  foo                  foo
                     3
A                    1
B  2018-01-01 00:00:00
C                    1
D                    3
E                train
F                  foo

#df排序
print(df.sort_index(axis=1, ascending=False)) #根据索引值对各行进行排序(相当于重新排列各列的位置)
print(df.sort_values(by='E')) #根据内容值对各列进行排序

     F      E  D    C          B    A
0  foo   test  3  1.0 2018-01-01  1.0
1  foo  train  3  1.0 2018-01-01  1.0
2  foo   test  3  1.0 2018-01-01  1.0
3  foo  train  3  1.0 2018-01-01  1.0
     A          B    C  D      E    F
0  1.0 2018-01-01  1.0  3   test  foo
2  1.0 2018-01-01  1.0  3   test  foo
1  1.0 2018-01-01  1.0  3  train  foo
3  1.0 2018-01-01  1.0  3  train  foo

indexes = pd.date_range('20180101', periods=6)
df3 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes, columns=['A', 'B', 'C', 'D'])
print(df3)
print()
#选择column
print(df3['A'])
print()
print(df3.A)

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
2018-01-01     0
2018-01-02     4
2018-01-03     8
2018-01-04    12
2018-01-05    16
2018-01-06    20
Freq: D, Name: A, dtype: int32
2018-01-01     0
2018-01-02     4
2018-01-03     8
2018-01-04    12
2018-01-05    16
2018-01-06    20
Freq: D, Name: A, dtype: int32
            A  B   C   D
2018-01-01  0  1   2   3
2018-01-02  4  5   6   7
2018-01-03  8  9  10  11

#选择行, 类似limit语句
print(df3[0:0])
print()
print(df3[0:3])
print()
print(df3['20180103':'20180105'])

Empty DataFrame
Columns: [A, B, C, D]
Index: []
            A  B   C   D
2018-01-01  0  1   2   3
2018-01-02  4  5   6   7
2018-01-03  8  9  10  11
             A   B   C   D
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19

print(df3.loc['20180102']) #返回指定行构成的序列

A    4
B    5
C    6
D    7
Name: 2018-01-02 00:00:00, dtype: int32

print(df3.loc['20180103', ['A','C']]) #列筛选
print()
print(df3.loc['20180103':'20180105', ['A','C']]) #子df,类似select A, C from df limit ...
print()
print(df3.loc[:, ['A', 'B']])

A     8
C    10
Name: 2018-01-03 00:00:00, dtype: int32
             A   C
2018-01-03   8  10
2018-01-04  12  14
2018-01-05  16  18
             A   B
2018-01-01   0   1
2018-01-02   4   5
2018-01-03   8   9
2018-01-04  12  13
2018-01-05  16  17
2018-01-06  20  21

print(df3);print()
print(df3.iloc[1]);print()
print(df3.iloc[1,1]);print()
print(df3.iloc[:,1]);print()
print(df3.iloc[0:3,1:3]);print()
print(df3.iloc[[1,3,5],[0,2]]) #行可以不连续,limit做不到

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
A    4
B    5
C    6
D    7
Name: 2018-01-02 00:00:00, dtype: int32
5
2018-01-01     1
2018-01-02     5
2018-01-03     9
2018-01-04    13
2018-01-05    17
2018-01-06    21
Freq: D, Name: B, dtype: int32
            B   C
2018-01-01  1   2
2018-01-02  5   6
2018-01-03  9  10
             A   C
2018-01-02   4   6
2018-01-04  12  14
2018-01-06  20  22

# print(df3.ix[:3, ['A', 'C']])\
print(df3);print()
print(df3[df3.A >= 8]) #根据值进行条件过滤,类似where A >= 8条件语句

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
             A   B   C   D
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23

indexes1 = pd.date_range('20180101', periods=6)
df4 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes1, columns=['A', 'B', 'C', 'D'])
print(df4);print()
#给某个元素赋值
df4.A[1] = 1111
df4.B['20180103'] = 2222
df4.iloc[3, 2] = 3333
df4.loc['20180105', 'D'] = 4444
print(df4);print()
#范围赋值
df4.B[df4.A < 10] = -1
print(df4);print()
df4[df4.A < 10] = 0
print(df4);print()

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
               A     B     C     D
2018-01-01     0     1     2     3
2018-01-02  1111     5     6     7
2018-01-03     8  2222    10    11
2018-01-04    12    13  3333    15
2018-01-05    16    17    18  4444
2018-01-06    20    21    22    23
               A   B     C     D
2018-01-01     0  -1     2     3
2018-01-02  1111   5     6     7
2018-01-03     8  -1    10    11
2018-01-04    12  13  3333    15
2018-01-05    16  17    18  4444
2018-01-06    20  21    22    23
               A   B     C     D
2018-01-01     0   0     0     0
2018-01-02  1111   5     6     7
2018-01-03     0   0     0     0
2018-01-04    12  13  3333    15
2018-01-05    16  17    18  4444
2018-01-06    20  21    22    23

indexes1 = pd.date_range('20180101', periods=6)
df4 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes1, columns=['A', 'B', 'C', 'D'])
print(df4);print()
#添加一列
df4['E'] = np.NaN
print(df4);print()
#由于index没对齐,原df没有的行默认为NaN,类型为float64,多出的行丢弃
df4['F'] = pd.Series([1,2,3,4,5,6], index=pd.date_range('20180102', periods=6))
print(df4);print()
print(df4.dtypes)

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
             A   B   C   D   E
2018-01-01   0   1   2   3 NaN
2018-01-02   4   5   6   7 NaN
2018-01-03   8   9  10  11 NaN
2018-01-04  12  13  14  15 NaN
2018-01-05  16  17  18  19 NaN
2018-01-06  20  21  22  23 NaN
             A   B   C   D   E    F
2018-01-01   0   1   2   3 NaN  NaN
2018-01-02   4   5   6   7 NaN  1.0
2018-01-03   8   9  10  11 NaN  2.0
2018-01-04  12  13  14  15 NaN  3.0
2018-01-05  16  17  18  19 NaN  4.0
2018-01-06  20  21  22  23 NaN  5.0
A      int32
B      int32
C      int32
D      int32
E    float64
F    float64
dtype: object

df_t = pd.DataFrame(np.arange(24).reshape(6, 4), index=[1,2,3,4,5,6], columns=['A', 'B', 'C', 'D'])
df_t.iloc[0, 1] = np.NaN
df_t.iloc[1, 2] = np.NaN
df = df_t.copy()
print(df);print()
print(df.dropna(axis=0, how='any'));print()
df = df_t.copy()
print(df.dropna(axis=1, how='any'));print()
df = df_t.copy()
df.C = np.NaN
print(df);print()
print(df.dropna(axis=1, how='all'));print()

    A     B     C   D
1   0   NaN   2.0   3
2   4   5.0   NaN   7
3   8   9.0  10.0  11
4  12  13.0  14.0  15
5  16  17.0  18.0  19
6  20  21.0  22.0  23
    A     B     C   D
3   8   9.0  10.0  11
4  12  13.0  14.0  15
5  16  17.0  18.0  19
6  20  21.0  22.0  23
    A   D
1   0   3
2   4   7
3   8  11
4  12  15
5  16  19
6  20  23
    A     B   C   D
1   0   NaN NaN   3
2   4   5.0 NaN   7
3   8   9.0 NaN  11
4  12  13.0 NaN  15
5  16  17.0 NaN  19
6  20  21.0 NaN  23
    A     B   D
1   0   NaN   3
2   4   5.0   7
3   8   9.0  11
4  12  13.0  15
5  16  17.0  19
6  20  21.0  23

df = df_t.copy()
print(df);print()
print(df.isna());print()
print(df.isnull().any());print() #isnull是isna别名,功能一样
print(df.isnull().any(axis=1));print()
print(np.any(df.isna() == True));print()
print(df.fillna(value=0)) #将NaN赋值

    A     B     C   D
1   0   NaN   2.0   3
2   4   5.0   NaN   7
3   8   9.0  10.0  11
4  12  13.0  14.0  15
5  16  17.0  18.0  19
6  20  21.0  22.0  23
       A      B      C      D
1  False   True  False  False
2  False  False   True  False
3  False  False  False  False
4  False  False  False  False
5  False  False  False  False
6  False  False  False  False
A    False
B     True
C     True
D    False
dtype: bool
1     True
2     True
3    False
4    False
5    False
6    False
dtype: bool
True
    A     B     C   D
1   0   0.0   2.0   3
2   4   5.0   0.0   7
3   8   9.0  10.0  11
4  12  13.0  14.0  15
5  16  17.0  18.0  19
6  20  21.0  22.0  23

data = pd.read_csv('D:/pythonwp/test/student.csv')
print(data)
data.to_pickle('D:/pythonwp/test/student.pickle')

   id     name  age  gender
0   1       牛帅   23    Male
1   2      gyb   89    Male
2   3      xxs   27    Male
3   4      hey   24  Female
4   5    奥莱利赫本   66  Female
5   6  Jackson   61    Male
6   7       牛帅   23    Male

df0 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['A', 'B', 'C', 'D'])
df1 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['A', 'B', 'C', 'D'])
df2 = pd.DataFrame(np.ones((3, 4)) * 2, columns=['A', 'B', 'C', 'D'])
print(df0); print()
print(df1); print()
print(df2); print()
res = pd.concat([df0, df1, df2], axis = 0)
print(res); print()
res = pd.concat([df0, df1, df2], axis = 0, ignore_index=True)
print(res)

     A    B    C    D
0  0.0  0.0  0.0  0.0
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
     A    B    C    D
0  1.0  1.0  1.0  1.0
1  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
     A    B    C    D
0  2.0  2.0  2.0  2.0
1  2.0  2.0  2.0  2.0
2  2.0  2.0  2.0  2.0
     A    B    C    D
0  0.0  0.0  0.0  0.0
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
0  1.0  1.0  1.0  1.0
1  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
0  2.0  2.0  2.0  2.0
1  2.0  2.0  2.0  2.0
2  2.0  2.0  2.0  2.0
     A    B    C    D
0  0.0  0.0  0.0  0.0
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
5  1.0  1.0  1.0  1.0
6  2.0  2.0  2.0  2.0
7  2.0  2.0  2.0  2.0
8  2.0  2.0  2.0  2.0

df0 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['A', 'B', 'C', 'D'])
df1 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['E', 'F', 'C', 'D'])
res = pd.concat([df0, df1], ignore_index=True)
print(res);print()
res = pd.concat([df0, df1], join='outer', ignore_index=True)
print(res);print()
res = pd.concat([df0, df1], join='inner',ignore_index=True)
print(res);print()

     A    B    C    D    E    F
0  0.0  0.0  0.0  0.0  NaN  NaN
1  0.0  0.0  0.0  0.0  NaN  NaN
2  0.0  0.0  0.0  0.0  NaN  NaN
3  NaN  NaN  1.0  1.0  1.0  1.0
4  NaN  NaN  1.0  1.0  1.0  1.0
5  NaN  NaN  1.0  1.0  1.0  1.0
     A    B    C    D    E    F
0  0.0  0.0  0.0  0.0  NaN  NaN
1  0.0  0.0  0.0  0.0  NaN  NaN
2  0.0  0.0  0.0  0.0  NaN  NaN
3  NaN  NaN  1.0  1.0  1.0  1.0
4  NaN  NaN  1.0  1.0  1.0  1.0
5  NaN  NaN  1.0  1.0  1.0  1.0
     C    D
0  0.0  0.0
1  0.0  0.0
2  0.0  0.0
3  1.0  1.0
4  1.0  1.0
5  1.0  1.0

#横向合并
df0 = pd.DataFrame(np.ones((3, 4)) * 0, index=['1', '2', '3'], columns=['A', 'B', 'C', 'D'])
df1 = pd.DataFrame(np.ones((3, 4)) * 1, index=['2', '3', '4'], columns=['A', 'B', 'C', 'D'])
print(df0);print()
print(df1);print()
res = pd.concat([df0, df1], axis=1)
print(res);print()
res = pd.concat([df0, df1], axis=1, join='inner', ignore_index=True)
print(res);print()
res = pd.concat([df0, df1], axis=1, join_axes=[df0.index])
print(res);print()

     A    B    C    D
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  0.0  0.0  0.0  0.0
     A    B    C    D
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
     A    B    C    D    A    B    C    D
1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN
2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
4  NaN  NaN  NaN  NaN  1.0  1.0  1.0  1.0
     0    1    2    3    4    5    6    7
2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
     A    B    C    D    A    B    C    D
1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN
2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0

df0 = pd.DataFrame(np.ones((3, 4)) * 0, index=['1', '2', '3'], columns=['A', 'B', 'C', 'D'])
df1 = pd.DataFrame(np.ones((3, 4)) * 1, index=['2', '3', '4'], columns=['A', 'B', 'C', 'D'])
print(df0);print()
print(df1);print()
res = df0.append([df1, df1], ignore_index=False)
print(res);print()
s = pd.Series([1,2,3,4], index=['A','B','C','E'])
print(df0.append(s, ignore_index=True))

     A    B    C    D
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  0.0  0.0  0.0  0.0
     A    B    C    D
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
     A    B    C    D
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  0.0  0.0  0.0  0.0
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
     A    B    C    D    E
0  0.0  0.0  0.0  0.0  NaN
1  0.0  0.0  0.0  0.0  NaN
2  0.0  0.0  0.0  0.0  NaN
3  1.0  2.0  3.0  NaN  4.0

df1 = pd.DataFrame({'key':['K0', 'K1', 'K2'],
          'A':['A0', 'A1', 'A2'],
          'B':['B0', 'B1', 'B2']})
df2 = pd.DataFrame({'key':['K3', 'K1', 'K2'],
          'C':['C3', 'C1', 'C2'],
          'D':['D3', 'D1', 'D2']})
print(df1); print()
print(df2); print()
res = pd.merge(df1, df2, on='key')
print(res); print()
res = pd.merge(df1, df2, on='key', how='outer')
print(res); print()
res = pd.merge(df1, df2, on='key', how='left')
print(res); print()
res = pd.merge(df1, df2, on='key', how='right')
print(res); print()

    A   B key
0  A0  B0  K0
1  A1  B1  K1
2  A2  B2  K2
    C   D key
0  C3  D3  K3
1  C1  D1  K1
2  C2  D2  K2
    A   B key   C   D
0  A1  B1  K1  C1  D1
1  A2  B2  K2  C2  D2
     A    B key    C    D
0   A0   B0  K0  NaN  NaN
1   A1   B1  K1   C1   D1
2   A2   B2  K2   C2   D2
3  NaN  NaN  K3   C3   D3
    A   B key    C    D
0  A0  B0  K0  NaN  NaN
1  A1  B1  K1   C1   D1
2  A2  B2  K2   C2   D2
     A    B key   C   D
0   A1   B1  K1  C1  D1
1   A2   B2  K2  C2  D2
2  NaN  NaN  K3  C3  D3

df1 = pd.DataFrame({'key1':['K0', 'K0', 'K1'],
          'key2':['K0', 'K1', 'K1'],
          'A':['A0', 'A1', 'A2'],
          'B':['B0', 'B1', 'B2']})
df2 = pd.DataFrame({'key1':['K0', 'K0', 'K1', 'K2'],
          'key2':['K0', 'K0', 'K1', 'K2'],
          'C':['C3', 'C1', 'C2', 'C4'],
          'D':['D3', 'D1', 'D2', 'D4']})
print(df1); print()
print(df2); print()
res = pd.merge(df1, df2, on=['key1','key2'])
print(res); print()
res = pd.merge(df1, df2, on=['key1','key2'], how='outer', indicator='indi')
print(res); print()

    A   B key1 key2
0  A0  B0   K0   K0
1  A1  B1   K0   K1
2  A2  B2   K1   K1
    C   D key1 key2
0  C3  D3   K0   K0
1  C1  D1   K0   K0
2  C2  D2   K1   K1
3  C4  D4   K2   K2
    A   B key1 key2   C   D
0  A0  B0   K0   K0  C3  D3
1  A0  B0   K0   K0  C1  D1
2  A2  B2   K1   K1  C2  D2
     A    B key1 key2    C    D        indi
0   A0   B0   K0   K0   C3   D3        both
1   A0   B0   K0   K0   C1   D1        both
2   A1   B1   K0   K1  NaN  NaN   left_only
3   A2   B2   K1   K1   C2   D2        both
4  NaN  NaN   K2   K2   C4   D4  right_only

#以上是根据值合并。下面根据index合并
df1 = pd.DataFrame({'A':['A0', 'A1', 'A2'],
          'B':['B0', 'B1', 'B2']},
          index=['index0', 'index1', 'index2'])
df2 = pd.DataFrame({'A':['C3', 'C1', 'C2'],
          'D':['D3', 'D1', 'D2']},
          index=['index3', 'index1', 'index2'])
print(df1); print()
print(df2); print()
res = pd.merge(df1, df2, left_index=True, right_index=True)
print(res); print()
res = pd.merge(df1, df2, left_index=True, right_index=True, how='outer', suffixes=['_b', '_g'])
print(res); print()

         A   B
index0  A0  B0
index1  A1  B1
index2  A2  B2
         A   D
index3  C3  D3
index1  C1  D1
index2  C2  D2
       A_x   B A_y   D
index1  A1  B1  C1  D1
index2  A2  B2  C2  D2
        A_b    B  A_g    D
index0   A0   B0  NaN  NaN
index1   A1   B1   C1   D1
index2   A2   B2   C2   D2
index3  NaN  NaN   C3   D3

res = df1.join(df2, how='outer', lsuffix='_left', rsuffix='_right') #不用on默认用索引合并
print(res);print()
res = df1.join(df2, on='B', how='outer', lsuffix='_left', rsuffix='_right') #用on指定df1的某列和df2的索引合并
print(res);print()

       A_left    B A_right    D
index0     A0   B0     NaN  NaN
index1     A1   B1      C1   D1
index2     A2   B2      C2   D2
index3    NaN  NaN      C3   D3
       A_left       B A_right    D
index0     A0      B0     NaN  NaN
index1     A1      B1     NaN  NaN
index2     A2      B2     NaN  NaN
index2    NaN  index3      C3   D3
index2    NaN  index1      C1   D1
index2    NaN  index2      C2   D2

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt #画图模块
s = pd.Series(np.random.randn(1000), index=np.arange(1000))
s = s.cumsum()
#须在命令行执行, jupyter会报错
#s.plot()
#plt.show()
df = pd.DataFrame(np.random.randn(1000, 3), columns=['A', 'B', 'C'])
df = df.cumsum()
print(df.head()); print() #head默认显示前5行
#须在命令行执行, jupyter会报错
#s.plot()
#plt.show()
#须在命令行执行, jupyter会报错
#'bar', 'hist', 'box', 'kde', 'area', 'scatter', 'hexbin', 'pie'...
#class_B = df.plot.scatter(x='A', y='B', color='DarkBlue', label='Class B') #画图,scatter<散点图>
#df.plot.scatter(x='A', y='C', color='DarkRed', label='Class C', class_B=class_B)
#plt.show()

          A         B         C
0 -0.399363 -1.004210  0.641141
1 -1.970009 -0.608482 -0.758504
2 -3.081640 -0.617352 -1.143872
3 -2.174627 -1.383785 -1.011411
4 -1.415515 -1.892226 -2.511739

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python操作Excel表格技巧总结》、《Python文件与目录操作技巧汇总》、《Python文本文件操作技巧汇总》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

  • 尝试使用Python多线程抓取代理服务器IP地址的示例

    尝试使用Python多线程抓取代理服务器IP地址的示例

    这篇文章主要介绍了尝试使用Python多线程抓取代理服务器IP地址的示例,尽管有GIL的存在使得Python并不能真正实现多线程并行,需要的朋友可以参考下
    2015-11-11
  • 浅谈Python程序的错误:变量未定义

    浅谈Python程序的错误:变量未定义

    这篇文章主要介绍了浅谈Python程序的错误:变量未定义,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Python的化简函数reduce()详解

    Python的化简函数reduce()详解

    这篇文章主要介绍了Python的化简函数reduce()详解,reduce()函数即为化简函数,它的执行过程为:每一次迭代,都将上一次的迭代结果与下一个元素一同传入二元func函数中去执行,需要的朋友可以参考下
    2023-12-12
  • Django MTV和MVC的区别详解

    Django MTV和MVC的区别详解

    这篇文章主要介绍了Django MTV和MVC的区别详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03
  • python数据挖掘使用Evidently创建机器学习模型仪表板

    python数据挖掘使用Evidently创建机器学习模型仪表板

    在本文中,我们将探索 Evidently 并创建交互式报告/仪表板。有需要的朋友欢迎大家收藏学习,希望能够有所帮助,祝大家多多进步早日升职加薪
    2021-11-11
  • Python常见错误类型及解决方法

    Python常见错误类型及解决方法

    如果说写代码最害怕什么,那无疑是Bug。而对于新手来说,刚刚接触编程,在享受写代码的成就感时,往往也会被各式各样的Bug弄得晕头转向。Python常见错误类型及解决方法,拯救你的代码!消灭Bug的过程就是技能经验的累积过程。
    2023-06-06
  • Python3操作SQL Server数据库(实例讲解)

    Python3操作SQL Server数据库(实例讲解)

    下面小编就为大家带来一篇Python3操作SQL Server数据库(实例讲解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-10-10
  • Python压缩和解压缩zip文件

    Python压缩和解压缩zip文件

    这篇文章主要介绍了Python压缩和解压缩zip文件,本文直接给出实例代码,需要的朋友可以参考下
    2015-02-02
  • python如何实现视频转代码视频

    python如何实现视频转代码视频

    这篇文章主要为大家详细介绍了python如何实现视频转代码视频,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-06-06
  • Ubuntu安装Python3.8的两种方法详解

    Ubuntu安装Python3.8的两种方法详解

    这篇文章主要给大家介绍了关于Ubuntu安装Python3.8的两种方法,在Ubuntu上安装Python非常简单,文中介绍了两种方法,每种方法都给出了详细实例,需要的朋友可以参考下
    2023-09-09

最新评论