Python操作rabbitMQ的示例代码

 更新时间:2019年03月19日 10:18:26   作者:Warm and new  
这篇文章主要介绍了Python操作rabbitMQ的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

引入

RabbitMQ 是一个由 Erlang 语言开发的 AMQP 的开源实现。

rabbitMQ是一款基于AMQP协议的消息中间件,它能够在应用之间提供可靠的消息传输。在易用性,扩展性,高可用性上表现优秀。使用消息中间件利于应用之间的解耦,生产者(客户端)无需知道消费者(服务端)的存在。而且两端可以使用不同的语言编写,大大提供了灵活性。

中文文档

安装

# 安装配置epel源
  rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
 
# 安装erlang
  yum -y install erlang
 
# 安装RabbitMQ
  yum -y install rabbitmq-server

# 启动/停止
  service rabbitmq-server start/stop

rabbitMQ工作模型

简单模式

生产者

import pika
connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost'))

channel = connection.channel()

channel.queue_declare(queue='hello')

channel.basic_publish(exchange='',
           routing_key='hello',
           body='Hello World!')

print(" [x] Sent 'Hello World!'")
connection.close()

消费者

connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
 
channel.queue_declare(queue='hello')
 
def callback(ch, method, properties, body):
  print(" [x] Received %r" % body)
 
channel.basic_consume( callback,
            queue='hello',
            no_ack=True)
 
print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

相关参数

1,no-ack = False

如果消费者遇到情况(its channel is closed, connection is closed, or TCP connection is lost)挂掉了,那么,RabbitMQ会重新将该任务添加到队列中。

  • 回调函数中的 ch.basic_ack(delivery_tag=method.delivery_tag)
  • basic_comsume中的no_ack=False

接收消息端应该这么写:


import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='10.211.55.4'))
channel = connection.channel()

channel.queue_declare(queue='hello')

def callback(ch, method, properties, body):
  print(" [x] Received %r" % body)
  import time
  time.sleep(10)
  print 'ok'
  ch.basic_ack(delivery_tag = method.delivery_tag)

channel.basic_consume(callback,
           queue='hello',
           no_ack=False)

print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

2,durable :消息不丢失

生产者

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
channel = connection.channel()

# make message persistent
channel.queue_declare(queue='hello', durable=True)

channel.basic_publish(exchange='',
           routing_key='hello',
           body='Hello World!',
           properties=pika.BasicProperties(
             delivery_mode=2, # make message persistent
           ))
print(" [x] Sent 'Hello World!'")
connection.close()

3,消息获取顺序

默认消息队列里的数据是按照顺序被消费者拿走,例如:消费者1 去队列中获取 奇数 序列的任务,消费者1去队列中获取 偶数 序列的任务。

channel.basic_qos(prefetch_count=1) 表示谁来谁取,不再按照奇偶数排列

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
channel = connection.channel()

# make message persistent
channel.queue_declare(queue='hello')


def callback(ch, method, properties, body):
  print(" [x] Received %r" % body)
  import time
  time.sleep(10)
  print 'ok'
  ch.basic_ack(delivery_tag = method.delivery_tag)

channel.basic_qos(prefetch_count=1)

channel.basic_consume(callback,
           queue='hello',
           no_ack=False)

print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

exchange模型

1,发布订阅

发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。

exchange type = fanout

生产者

import pika
import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='logs',
             type='fanout')

message = ' '.join(sys.argv[1:]) or "info: Hello World!"
channel.basic_publish(exchange='logs',
           routing_key='',
           body=message)
print(" [x] Sent %r" % message)
connection.close()

消费者

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='logs',
             type='fanout')

result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue

channel.queue_bind(exchange='logs',
          queue=queue_name)

print(' [*] Waiting for logs. To exit press CTRL+C')

def callback(ch, method, properties, body):
  print(" [x] %r" % body)

channel.basic_consume(callback,
           queue=queue_name,
           no_ack=True)

channel.start_consuming()

2,关键字发送

之前事例,发送消息时明确指定某个队列并向其中发送消息,RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。

exchange type = direct

import pika
import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='direct_logs',
             type='direct')

result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue

severities = sys.argv[1:]
if not severities:
  sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])
  sys.exit(1)

for severity in severities:
  channel.queue_bind(exchange='direct_logs',
            queue=queue_name,
            routing_key=severity)

print(' [*] Waiting for logs. To exit press CTRL+C')

def callback(ch, method, properties, body):
  print(" [x] %r:%r" % (method.routing_key, body))

channel.basic_consume(callback,
           queue=queue_name,
           no_ack=True)

channel.start_consuming()

3,模糊匹配

exchange type = topic

发送者路由值 队列中
old.boy.python old.* -- 不匹配
old.boy.python old.# -- 匹配

在topic类型下,可以让队列绑定几个模糊的关键字,之后发送者将数据发送到exchange,exchange将传入”路由值“和 ”关键字“进行匹配,匹配成功,则将数据发送到指定队列。

  • # 表示可以匹配 0 个 或 多个 单词
  • *  表示只能匹配 一个 单词
import pika
import sys

connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost'))
channel = connection.channel()

channel.exchange_declare(exchange='topic_logs',
             type='topic')

result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue

binding_keys = sys.argv[1:]
if not binding_keys:
  sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])
  sys.exit(1)

for binding_key in binding_keys:
  channel.queue_bind(exchange='topic_logs',
            queue=queue_name,
            routing_key=binding_key)

print(' [*] Waiting for logs. To exit press CTRL+C')

def callback(ch, method, properties, body):
  print(" [x] %r:%r" % (method.routing_key, body))

channel.basic_consume(callback,
           queue=queue_name,
           no_ack=True)

channel.start_consuming()

基于rabbitMQ的RPC

 Callback queue 回调队列

一个客户端向服务器发送请求,服务器端处理请求后,将其处理结果保存在一个存储体中。而客户端为了获得处理结果,那么客户在向服务器发送请求时,同时发送一个回调队列地址 reply_to

Correlation id 关联标识

一个客户端可能会发送多个请求给服务器,当服务器处理完后,客户端无法辨别在回调队列中的响应具体和那个请求时对应的。为了处理这种情况,客户端在发送每个请求时,同时会附带一个独有 correlation_id 属性,这样客户端在回调队列中根据 correlation_id 字段的值就可以分辨此响应属于哪个请求。

客户端发送请求:

某个应用将请求信息交给客户端,然后客户端发送RPC请求,在发送RPC请求到RPC请求队列时,客户端至少发送带有reply_to以及correlation_id两个属性的信息

服务端工作流:

等待接受客户端发来RPC请求,当请求出现的时候,服务器从RPC请求队列中取出请求,然后处理后,将响应发送到reply_to指定的回调队列中

客户端接受处理结果:

客户端等待回调队列中出现响应,当响应出现时,它会根据响应中correlation_id字段的值,将其返回给对应的应用

服务者

import pika

# 建立连接,服务器地址为localhost,可指定ip地址
connection = pika.BlockingConnection(pika.ConnectionParameters(
    host='localhost'))

# 建立会话
channel = connection.channel()

# 声明RPC请求队列
channel.queue_declare(queue='rpc_queue')

# 数据处理方法
def fib(n):
  if n == 0:
    return 0
  elif n == 1:
    return 1
  else:
    return fib(n-1) + fib(n-2)

# 对RPC请求队列中的请求进行处理
def on_request(ch, method, props, body):
  n = int(body)

  print(" [.] fib(%s)" % n)

  # 调用数据处理方法
  response = fib(n)

  # 将处理结果(响应)发送到回调队列
  ch.basic_publish(exchange='',
           routing_key=props.reply_to,
           properties=pika.BasicProperties(correlation_id = \
                             props.correlation_id),
           body=str(response))
  ch.basic_ack(delivery_tag = method.delivery_tag)

# 负载均衡,同一时刻发送给该服务器的请求不超过一个
channel.basic_qos(prefetch_count=1)

channel.basic_consume(on_request, queue='rpc_queue')

print(" [x] Awaiting RPC requests")
channel.start_consuming()

客户端

import pika
import uuid

class FibonacciRpcClient(object):
  def __init__(self):
    """
    客户端启动时,创建回调队列,会开启会话用于发送RPC请求以及接受响应
    """
    # 建立连接,指定服务器的ip地址
    self.connection = pika.BlockingConnection(pika.ConnectionParameters(
        host='localhost'))
        
    # 建立一个会话,每个channel代表一个会话任务
    self.channel = self.connection.channel()
    
    # 声明回调队列,再次声明的原因是,服务器和客户端可能先后开启,该声明是幂等的,多次声明,但只生效一次
    result = self.channel.queue_declare(exclusive=True)
    # 将次队列指定为当前客户端的回调队列
    self.callback_queue = result.method.queue
    
    # 客户端订阅回调队列,当回调队列中有响应时,调用`on_response`方法对响应进行处理; 
    self.channel.basic_consume(self.on_response, no_ack=True,
                  queue=self.callback_queue)


  # 对回调队列中的响应进行处理的函数
  def on_response(self, ch, method, props, body):
    if self.corr_id == props.correlation_id:
      self.response = body


  # 发出RPC请求
  def call(self, n):
  
    # 初始化 response
    self.response = None
    
    #生成correlation_id 
    self.corr_id = str(uuid.uuid4())
    
    # 发送RPC请求内容到RPC请求队列`rpc_queue`,同时发送的还有`reply_to`和`correlation_id`
    self.channel.basic_publish(exchange='',
                  routing_key='rpc_queue',
                  properties=pika.BasicProperties(
                     reply_to = self.callback_queue,
                     correlation_id = self.corr_id,
                     ),
                  body=str(n))
                  
    
    while self.response is None:
      self.connection.process_data_events()
    return int(self.response)

# 建立客户端
fibonacci_rpc = FibonacciRpcClient()

# 发送RPC请求
print(" [x] Requesting fib(30)")
response = fibonacci_rpc.call(30)
print(" [.] Got %r" % response)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python实现在函数中修改变量值的方法

    python实现在函数中修改变量值的方法

    今天小编就为大家分享一篇python实现在函数中修改变量值的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Python基础学习之基本数据结构详解【数字、字符串、列表、元组、集合、字典】

    Python基础学习之基本数据结构详解【数字、字符串、列表、元组、集合、字典】

    这篇文章主要介绍了Python基础学习之基本数据结构,结合实例形式分析了Python数字、字符串、列表、元组、集合、字典等基本数据类型功能、原理及相关使用技巧,需要的朋友可以参考下
    2019-06-06
  • Python数据类型之Tuple元组实例详解

    Python数据类型之Tuple元组实例详解

    这篇文章主要介绍了Python数据类型之Tuple元组,结合实例形式分析了Python元组类型的概念、定义、读取、连接、判断等常见操作技巧与相关注意事项,需要的朋友可以参考下
    2019-05-05
  • Flask框架配置与调试操作示例

    Flask框架配置与调试操作示例

    这篇文章主要介绍了Flask框架配置与调试操作,结合实例形式简单分析了flask框架配置管理与调试模式简单操作技巧,需要的朋友可以参考下
    2018-07-07
  • 解析python的局部变量和全局变量

    解析python的局部变量和全局变量

    函数内部定义的变量就叫局部变量而如果一个变量既能在一个函数中使用,也可以在其他函数中使用,这样的变量就是全局变量。 本文给大家介绍python的局部变量和全局变量的相关知识,感兴趣的朋友一起看看吧
    2019-08-08
  • Python matplotlib如何简单绘制不同类型的表格

    Python matplotlib如何简单绘制不同类型的表格

    通过Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等,下面这篇文章主要给大家介绍了关于Python matplotlib如何简单绘制不同类型表格的相关资料,需要的朋友可以参考下
    2022-07-07
  • Python 异步之如何保护任务免于取消详解

    Python 异步之如何保护任务免于取消详解

    这篇文章主要为大家介绍了Python 异步之如何保护任务免于取消示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-03-03
  • Django模板语言 Tags使用详解

    Django模板语言 Tags使用详解

    这篇文章主要介绍了Django模板语言 Tags使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09
  • python查看微信好友是否删除自己

    python查看微信好友是否删除自己

    这篇文章主要为大家详细介绍了python查看微信好友是否删除自己,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2016-12-12
  • Python批量写入ES索引数据的示例代码

    Python批量写入ES索引数据的示例代码

    这篇文章主要为大家详细介绍了如何使用python脚本批量写ES数据(需要使用pip提前下载安装es依赖库),感兴趣的小伙伴可以学习一下
    2024-02-02

最新评论