python中如何使用分步式进程计算详解

 更新时间:2019年03月22日 08:56:53   作者:杨彦星  
抽了点时间体验了一把python分布式进程,有点像分布式计算的意思,这篇文章主要给大家介绍了关于python中如何使用分步式进程计算的相关资料,需要的朋友可以参考下

前言

在python中使用多进程和多线程都能达到同时运行多个任务,和多进程和多线程的选择上,应该优先选择多进程的方式,因为多进程更加稳定,且对于进程的操作管理也更加方便,但有一点是多进程独有的杀手锏,多进程可以将进程分步到多台机器上跑,假如有很多个任务,一台机器即使开了多进程或者多进程跑起来还是要耗很多时间,那么这时就要想一下可否将任务分配到多台机器上跑,这样可以更快的完成任务。

在分步式进程运算中,进程之前的通信还是依赖于Queue,但此时的队列不能直接使用,需要使用multiprocessing.managers.BaseManager 进行包装,通过回调以后才能使用,既然是分步式的调用,那么应该有一个服务端和一个客户端,服务端通过网络协议将队列中的信息给各个客户端进行调用,客户端也可以通过队列将结果返回,然后服务端进行结果的收集展示,流程如下


分步式流程

服务端将任务放到 task_queue 中,然后四个客户端通过网络端口从task_queue中获取到任务,然后进行计算,再将结果放到result_queue中,最后服务端统一处理结果。整体的流程比较清晰,只是需要强调,这里的队列不能是原始的队列,需要使用BaseManager 进行包装。

先看一下服务端的代码

#coding:gbk
import time, queue
from multiprocessing.managers import BaseManager
from multiprocessing import freeze_support

# 任务个数
task_number = 10
# 定义收发队列
task_queue = queue.Queue(task_number)
result_queue = queue.Queue(task_number)


def gettask():
 return task_queue


def getresult():
 return result_queue


def test():
 # windows下绑定调用接口不能使用lambda,所以只能先定义函数再绑定
 BaseManager.register('get_task', callable=gettask)
 BaseManager.register('get_result', callable=getresult)
 # 绑定端口并设置验证码,windows下需要填写ip地址,linux下不填默认为本地
 manager = BaseManager(address=('127.0.0.1', 5002), authkey=b'123')
 # 启动
 manager.start()
 try:
  # 通过网络获取任务队列和结果队列
  task = manager.get_task()
  result = manager.get_result()
  # 添加任务
  for i in range(task_number):
   print('Put task %d...' % i)
   task.put(i)
  # 每秒检测一次是否所有任务都被执行完
  while not result.full():
   print(task.qsize())
   time.sleep(1)
  for i in range(result.qsize()):
   ans = result.get()
   print('task %d is finish , runtime:%d s' % ans)
 except:
  print('Manager error')
 finally:
  manager.shutdown()


if __name__ == '__main__':
 # windows下多进程可能会炸,添加这句可以缓解
 freeze_support()
 test()

这里重点说一下 BaseManager.register('get_task', callable=gettask) 这行代码,它的意思是注册一个get_task的操作,执行的操作是gettask()函数,上面定义了gettask()函数,返回的是task_queue,这也是之前说的不能直接使用queue.Queue,必须要使用通过BaseManager的register接口封装过的的队列,下面使用task = manager.get_task()来获取到这个队列。

manager = BaseManager(address=('127.0.0.1', 5002), authkey=b'123')

这行代码初始了一个manager,它绑定了本机的5002端口,并且在客户端连接的时候需要一个密码:123。

接下来看一下客户端代码。

#coding:gbk

import time, sys, queue, random
from multiprocessing.managers import BaseManager
BaseManager.register('get_task')
BaseManager.register('get_result')
conn = BaseManager(address = ('127.0.0.1',5002), authkey = b'123')
try:
 conn.connect()
except:
 print('连接失败')
 sys.exit()
task = conn.get_task()
result = conn.get_result()
while not task.empty():
 print(task.qsize())
 n = task.get(timeout = 1)
 print('run task %d' % n)
 sleeptime = random.randint(0,3)
 time.sleep(sleeptime)
 rt = (n, sleeptime)
 result.put(rt)
if __name__ == '__main__':
 pass;

这里主要看以下的代码

BaseManager.register('get_task')
BaseManager.register('get_result')

这两个是注册函数,和之前的服务端所对应,之前服务端注册了这两个函数,这里才能注册使用,注意这里不能注册服务端没有注册的函数

运行一下,先运行服务端,然后再启两个cmd运行客户端,也可以在局域网中的另外的机器上运行,但是要修改服务端的ip地址

服务端的结果如下

Put task 0...
Put task 1...
Put task 2...
Put task 3...
Put task 4...
Put task 5...
Put task 6...
Put task 7...
Put task 8...
Put task 9...
task 0 is finish , runtime:3 s
task 1 is finish , runtime:0 s
task 2 is finish , runtime:2 s
task 4 is finish , runtime:1 s
task 3 is finish , runtime:3 s
task 6 is finish , runtime:1 s
task 7 is finish , runtime:0 s
task 5 is finish , runtime:3 s
task 8 is finish , runtime:2 s
task 9 is finish , runtime:3 s

两个客户端的结果分别如下

客户端1

10
run task 0
9
run task 1
8
run task 2
6
run task 4
5
run task 5
1
run task 9

客户端2

7
run task 3
4
run task 6
3
run task 7
2
run task 8

一起运行的截图如下

结果

由于队列是线程安全的,所以这里不用加锁,在客户端中打印print(task.qsize()) 当前的队列大小,可以看到队列的信息中同步到各个客户端的。

最后还是要多说一句,分步式多进程虽然可以把任务分散到不同的机器上运行,可以处理多任务,但是如果此时服务端挂掉的话,任务就全丢掉了,所以在生产环境下还是考虑使用消息中间件如kafka等。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对脚本之家的支持。

相关文章

  • Python调用Zoomeye搜索接口的实现

    Python调用Zoomeye搜索接口的实现

    本文主要介绍了Python调用Zoomeye搜索接口的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-01-01
  • python通过re正则表达式切割中英文的操作

    python通过re正则表达式切割中英文的操作

    这篇文章主要介绍了python通过re正则表达式切割中英文的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • 树莓派4B安装Tensorflow的方法步骤

    树莓派4B安装Tensorflow的方法步骤

    这篇文章主要介绍了树莓派4B安装Tensorflow的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-07-07
  • python 的 scapy库,实现网卡收发包的例子

    python 的 scapy库,实现网卡收发包的例子

    今天小编就为大家分享一篇python 的 scapy库,实现网卡收发包的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • pytest解读fixtures中yield与addfinalizer区别

    pytest解读fixtures中yield与addfinalizer区别

    这篇文章主要为大家介绍了pytest官方解读fixtures中yield与addfinalizer区别,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-06-06
  • Python Pandas DataFrame取列方式

    Python Pandas DataFrame取列方式

    这篇文章主要介绍了Python Pandas DataFrame取列方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-09-09
  • Python编程实现简易的音乐播放器基本操作

    Python编程实现简易的音乐播放器基本操作

    这篇文章主要来教大家利用Python编程来实现一个简易的音乐播放器,文中含有基本功能的操作示例,有需要的朋友可以借鉴参考下,希望能够有所帮助
    2021-10-10
  • 一分钟带你掌握Python中pip的安装与使用方法

    一分钟带你掌握Python中pip的安装与使用方法

    pip是什么?它是Python包管理工具,这个工具提供了对Python 包的查找、下载、安装和卸载的功能,这篇文章主要介绍了pip的安装与使用方法
    2021-08-08
  • python实现字符串连接的三种方法及其效率、适用场景详解

    python实现字符串连接的三种方法及其效率、适用场景详解

    本篇文章主要介绍了python实现字符串连接的三种方法及其效率、适用场景详解,具有一定的参考价值,感兴趣的小伙伴们可以参考一下。
    2017-01-01
  • Python 函数装饰器应用教程

    Python 函数装饰器应用教程

    函数装饰器是Python提供的一种增强函数功能的标记函数,本文将带大家深入学习一下Python 函数装饰器,感兴趣的同学跟随小编一起学习吧
    2021-12-12

最新评论