pymongo中聚合查询的使用方法

 更新时间:2019年03月22日 10:33:56   作者:杨彦星  
这篇文章主要给大家介绍了关于pymongo中聚合查询的使用方法,文中通过示例代码介绍的非常详细,对大家学习或者使用pymongo具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧

前言

在使用mongo数据库时,简单的查询基本上可以满足大多数的业务场景,但是试想一下,如果要统计某一荐在指定的数据中出现了多少次该怎么查询呢?笨的方法是使用find 将数据查询出来,再使用count() 方法进行数据统计,这个场景还好,但是如果要求其中某个字段的和呢?是不是就非得遍历出相应的数据然后再进行求和运算呢?

在mysql中我们经常会用到count、group by 等查询,在mongodb中我们也可以使用聚合查询。

假设有这样的一组数据


价格

里面记录了每种水果的价格,现在我要统计一下,各种水果在这张表中出现的次数,如果不用聚合查询的话,思路应该是这样,先把表中所有的数据都取出来,然后初始化一个字典,然后再遍历每一行的数据,获取它的fName ,然后再更新字典中的计数,这种方法的时间复杂度是O(N)的,如果数据量很大的话不是很好,下面来看一下使用聚合是怎么查询的。

聚合查询使用的是aggregate函数,它的参数是 pipeline 管道,管道的概念是用于将当前命令的输出结果作为下一个命令的参数,管道是有顺序的,比如通过第一个管道操作以后没有符合的数据那么之后的管道操作也就不会有输入,所以一定得要注意管道操作的顺序。由于对于上述问题,我们要的是所的数据统计,所以这里就不需要$match了

from pymongo import MongoClient

client = MongoClient(host=['%s:%s'%(mongoDBhost,mongoDBport)])
G_mongo = client[mongoDBname]['FruitPrice']

pipeline = [
 {'$group': {'_id': "$fName", 'count': {'$sum': 1}}},
 ]
for i in G_mongo['test'].aggregate(pipeline):
 print i

数据大家可以自已构造,这里主要是看aggregate的用法。
得到的结果是

{u'count': 8, u'_id': u'banana'}
{u'count': 9, u'_id': u'pear'}
{u'count': 14, u'_id': u'apple'}

可以看到,一步操作就可以得到相应的统计了。

如果想要获取价格在50以上的各种统计呢?

这时有pipeline应该再$group 之前加上$match 操作

pipeline = [
 {'$match':{'price':{'$gte':50}}},
 {'$group': {'_id': "$fName", 'count': {'$sum': 1}}},
 ]

一定要注意顺序

$match里的条件其实就和使用find函数里是一样的。

下面重点来说说$group操作,group意为分组,指数据根据哪个字段进行分组,上面使用的{'$group': {'_id': "$fName", 'count': {'$sum': 1},_id为所要分的组,这里是以fName字段分的,后面的'count': {'$sum': 1},这里的$sum就是求和的意思,后面的值是1,也就是说每出现一次就加1,这样就能达到计数的目的了,如果要计算价格 price 的和,那么这里就应该写成这样

{'$group': {'_id': "$fName", 'count': {'$sum': '$price'}}}

注意这里的字段要有$ 的,如果我想要求价格的平均值呢?也就是先要求出价格的总数,再除以商品的个数,但是这里有一个$avg 操作

pipeline = [
 {'$match':{'price':{'$gte':50}}},
 {'$group': {'_id': "$fName", 'avg': {'$avg': '$price'}}},
 ]

得到的结果

{u'_id': u'banana', u'avg': 66.200000000000003}
{u'_id': u'pear', u'avg': 77.0}
{u'_id': u'apple', u'avg': 74.0}

类似于$ave的操作还有很多,比较常用的是$min(求最小值),$max(求最大值)

pipeline = [
 {'$match':{'price':{'$gte':50}}},
 {'$group': {'_id': "$fName",
  'count':{'$sum':1},
  'priceAll':{'$sum':'$price'},
  'avg': {'$avg': '$price'},
  'min': {'$min':'$price'},
  'max': {'$max':'$price'}
  }
 },
 ]
for i in G_mongo['test'].aggregate(pipeline):
 print i

所有支持的操作可以参考官方文档:group 支持的操作

以哪个字段进行分组时必须使用_id。

接下来看一下多键分组。

以上在使用group 进行分组查询的时候,用到的_id都是单一字段,比如我的数据库中有如下数据


带用户的数据

带有一个user 字段了,那如果我要根据user和fName进行分组该如何操作呢?
这里可以传一个字典进去

pipeline = [
 {'$match':{'price':{'$gte':50}}},
 {'$group': {'_id': {'fName':'$fName','user':'$user'},
  'count':{'$sum':1},
  'priceAll':{'$sum':'$price'},
  'avg': {'$avg': '$price'},
  'min': {'$min':'$price'},
  'max': {'$max':'$price'}
  }
 },
 ]
for i in G_mongo['test2'].aggregate(pipeline):
 print i

得到的结果如下:

{u'count': 1, u'avg': 93.0, u'min': 93, u'max': 93, u'_id': {u'user': u'fanjieying', u'fName': u'pear'}, u'priceAll': 93}
{u'count': 2, u'avg': 88.0, u'min': 87, u'max': 89, u'_id': {u'user': u'yangyanxing', u'fName': u'banana'}, u'priceAll': 176}
{u'count': 2, u'avg': 70.0, u'min': 69, u'max': 71, u'_id': {u'user': u'yangyanxing', u'fName': u'pear'}, u'priceAll': 140}
{u'count': 2, u'avg': 65.5, u'min': 58, u'max': 73, u'_id': {u'user': u'fanjieying', u'fName': u'banana'}, u'priceAll': 131}
{u'count': 3, u'avg': 92.333333333333329, u'min': 86, u'max': 97, u'_id': {u'user': u'fantuan', u'fName': u'banana'}, u'priceAll': 277}
{u'count': 2, u'avg': 78.5, u'min': 73, u'max': 84, u'_id': {u'user': u'yangyanxing', u'fName': u'apple'}, u'priceAll': 157}
{u'count': 3, u'avg': 56.666666666666664, u'min': 51, u'max': 60, u'_id': {u'user': u'fantuan', u'fName': u'pear'}, u'priceAll': 170}
{u'count': 2, u'avg': 81.5, u'min': 73, u'max': 90, u'_id': {u'user': u'fanjieying', u'fName': u'apple'}, u'priceAll': 163}
{u'count': 2, u'avg': 69.5, u'min': 53, u'max': 86, u'_id': {u'user': u'fantuan', u'fName': u'apple'}, u'priceAll': 139}

这里的结果显示出每个用户买了哪个商品,一共花了多少钱,最大最小平均值等都可以一次性的展示了,如果要是使用for循环自已遍历的话这种时间复杂度相当高。

这里只是简单的说了下$group和$match 的用法,聚合查询支持很多种操作(称为stages),可以通官方文档进行查看
pymongo 中pipeline中的stages

参考文章

pymongo 的 group by 方法

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对脚本之家的支持。

相关文章

  • 一篇文章彻底搞懂python正则表达式

    一篇文章彻底搞懂python正则表达式

    正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配,Python 自1.5版本起增加了re模块,这篇文章主要给大家介绍了如何通过一篇文章彻底搞懂python正则表达式的相关资料,需要的朋友可以参考下
    2021-09-09
  • python中GIL的原理及用法总结

    python中GIL的原理及用法总结

    在本篇文章里小编给大家整理的是一篇关于python中GIL的原理及用法总结内容,有需要的朋友们可以学习参考下。
    2021-03-03
  • OpenCV利用python来实现图像的直方图均衡化

    OpenCV利用python来实现图像的直方图均衡化

    这篇文章主要介绍了OpenCV利用python来实现图像的直方图均衡化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-10-10
  • Python实现发票自动校核微信机器人的方法

    Python实现发票自动校核微信机器人的方法

    这篇文章主要介绍了Python实现发票自动校核微信机器人的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-05-05
  • python中的eval函数使用实例

    python中的eval函数使用实例

    eval() 函数用来执行一个字符串表达式,并返回表达式的值,这篇文章主要介绍了python中的eval函数,需要的朋友可以参考下
    2022-11-11
  • Python计算机视觉SIFT尺度不变的图像特征变换

    Python计算机视觉SIFT尺度不变的图像特征变换

    这篇文章主要为大家介绍了Python计算机视觉SIFT尺度不变的图像特征变换,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05
  • python列表的常用操作方法小结

    python列表的常用操作方法小结

    这篇文章主要为大家详细介绍了python字典的常用操作方法,主要内容包含Python中列表(List)的详解操作方法,包含创建、访问、更新、删除、其它操作等,需要的朋友可以参考下
    2016-05-05
  • python爬虫设置每个代理ip的简单方法

    python爬虫设置每个代理ip的简单方法

    在本篇文章里小编给大家整理了一篇关于python爬虫设置每个代理ip的简单方法,有兴趣的朋友们可以学习参考下。
    2021-08-08
  • python实现图片上添加图片

    python实现图片上添加图片

    这篇文章主要为大家详细介绍了python实现图片上添加图片,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-11-11
  • python使用sessions模拟登录淘宝的方式

    python使用sessions模拟登录淘宝的方式

    这篇文章主要介绍了python使用sessions模拟登录淘宝的方式,本文给大家介绍的非常详细,具有一定的参考借鉴价值 ,需要的朋友可以参考下
    2019-08-08

最新评论