快速排序的四种python实现(推荐)

 更新时间:2019年04月03日 10:13:37   作者:lookupheaven  
这篇文章主要介绍了python实现快速排序算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

快速排序算法,简称快排,是最实用的排序算法,没有之一,各大语言标准库的排序函数也基本都是基于快排实现的。

本文用python语言介绍四种不同的快排实现。

1. 一行代码实现的简洁版本

quick_sort = lambda array: array if len(array) <= 1 else quick_sort([item for item in array[1:] if item <= array[0]]) + [array[0]] + quick_sort([item for item in array[1:] if item > array[0]])

2. 网上常见的快排实现

def quick_sort(array, left, right):
  if left >= right:
    return
  low = left
  high = right
  key = array[low]
  while left < right:
    while left < right and array[right] > key:
      right -= 1
    array[left] = array[right]
    while left < right and array[left] <= key:
      left += 1
    array[right] = array[left]
  array[right] = key
  quick_sort(array, low, left - 1)
  quick_sort(array, left + 1, high)

由于快排是原地排序,因此不需要返回array。

array如果是个列表的话,可以通过len(array)求得长度,但是后边递归调用的时候必须使用分片,而分片执行的原列表的复制操作,这样就达不到原地排序的目的了,所以还是要传上边界和下边界的。

3.《算法导论》中的快排程序

def quick_sort(array, l, r):
  if l < r:
    q = partition(array, l, r)
    quick_sort(array, l, q - 1)
    quick_sort(array, q + 1, r)
 
def partition(array, l, r):
  x = array[r]
  i = l - 1
  for j in range(l, r):
    if array[j] <= x:
      i += 1
      array[i], array[j] = array[j], array[i]
  array[i + 1], array[r] = array[r], array[i+1]
  return i + 1

这个版本跟上个版本的不同在于分片过程不同,只用了一层循环,并且一趟就完成分片,相比之下代码要简洁的多了。

4. 用栈实现非递归的快排程序

先说两句题外话,一般意义上的栈有两层含义,一层是后进先出的数据结构栈,一层是指函数的内存栈,归根结底,函数的内存栈的结构就是一个后进先出的栈。汇编代码中,调用一个函数的时候,修改的也是堆栈指针寄存器ESP,该寄存器保存的是函数局部栈的栈顶,另外一个寄存器EBP保存的是栈底。不知道与栈存储空间相对的堆存储空间,其组织结构是否也是一个完全二叉树呢?

高级语言将递归转换为迭代,用的也是栈,需要考虑两个问题:

1)栈里边保存什么?

2)迭代结束的条件是什么?

栈里边保存的当然是需要迭代的函数参数,结束条件也是跟需要迭代的参数有关。对于快速排序来说,迭代的参数是数组的上边界low和下边界high,迭代结束的条件是low == high。

def quick_sort(array, l, r):
  if l >= r:
    return
  stack = []
  stack.append(l)
  stack.append(r)
  while stack:
    low = stack.pop(0)
    high = stack.pop(0)
    if high - low <= 0:
      continue
    x = array[high]
    i = low - 1
    for j in range(low, high):
      if array[j] <= x:
        i += 1
        array[i], array[j] = array[j], array[i]
    array[i + 1], array[high] = array[high], array[i + 1]
    stack.extend([low, i, i + 2, high])

另外,当数组下标为-1时,C++、Java等语言中会报错,但python中访问的是最后一个元素,所以如果程序写错了,可能其他语言会报错,但python会输出一个错误的结果。

以上所述是小编给大家介绍的python实现快速排序算法详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对脚本之家网站的支持!

相关文章

  • Python文件操作之合并文本文件内容示例代码

    Python文件操作之合并文本文件内容示例代码

    众所周知Python文件处理操作方便快捷,下面这篇文章主要给大家介绍了关于Python文件操作之合并文本文件内容的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考借鉴,下面随着小编来一起学习学习吧。
    2017-09-09
  • Python 找出出现次数超过数组长度一半的元素实例

    Python 找出出现次数超过数组长度一半的元素实例

    这篇文章主要介绍了Python 找出出现次数超过数组长度一半的元素实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • python批量修改xml文件中的信息

    python批量修改xml文件中的信息

    大家好,本篇文章主要讲的是python批量修改xml文件中的信息,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下的相关资料
    2022-01-01
  • Python的Django框架安装全攻略

    Python的Django框架安装全攻略

    这篇文章主要介绍了Python的Django框架安装全攻略,其中包括Trunk版本的安装方法,是上手Django的超给力教程!需要的朋友可以参考下
    2015-07-07
  • VSCode搭建Django开发环境的图文步骤

    VSCode搭建Django开发环境的图文步骤

    本篇介绍在vscode环境下搭建Django开发环境的详细步骤,包括Python、Django、VSCode等,以及它们的安装和配置方法,具有一定的参考价值,感兴趣的可以了解一下
    2023-09-09
  • 如何解决python多种版本冲突问题

    如何解决python多种版本冲突问题

    这篇文章主要介绍了如何解决python多种版本冲突问题,帮助大家更好的进行python开发,感兴趣的朋友可以了解下
    2020-10-10
  • Python实现网络自动化eNSP

    Python实现网络自动化eNSP

    这篇文章主要介绍了Python实现网络自动化eNSP,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-05-05
  • 详解如何使用python脚本制作生成CANdbc

    详解如何使用python脚本制作生成CANdbc

    这篇文章主要为大家详细介绍了如何使用python脚本制作生成CANdbc,文中的示例代码讲解详细,具有一定的学习价值,感兴趣的小伙伴可以了解下
    2024-01-01
  • 用python实现一个文件搜索工具

    用python实现一个文件搜索工具

    大家好,本篇文章主要讲的是用python实现一个搜索工具,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下
    2022-01-01
  • Python绘制多因子柱状图的实现示例

    Python绘制多因子柱状图的实现示例

    本文主要介绍了Python绘制多因子柱状图的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-05-05

最新评论