python多进程读图提取特征存npy

 更新时间:2019年05月21日 11:12:01   作者:业余狙击手19  
这篇文章主要为大家详细介绍了python多进程读图提取特征存npy,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了python多进程读图提取特征存npy的具体代码,供大家参考,具体内容如下

import multiprocessing
import os, time, random
import numpy as np
import cv2
import os
import sys
from time import ctime
import tensorflow as tf
 
image_dir = r"D:/sxl/处理图片/汉字分类/train10/"  #图像文件夹路径
data_type = 'test'
save_path = r'E:/sxl_Programs/Python/CNN/npy/'  #存储路径
data_name = 'Img10'        #npy文件名
 
char_set = np.array(os.listdir(image_dir))   #文件夹名称列表
np.save(save_path+'ImgShuZi10.npy',char_set)   #文件夹名称列表
char_set_n = len(char_set)       #文件夹列表长度
 
read_process_n = 1 #进程数
repate_n = 4   #随机移动次数
data_size = 1000000 #1个npy大小
 
shuffled = True  #是否打乱
 
#可以读取带中文路径的图
def cv_imread(file_path,type=0):
 cv_img=cv2.imdecode(np.fromfile(file_path,dtype=np.uint8),-1)
 # print(file_path)
 # print(cv_img.shape)
 # print(len(cv_img.shape))
 if(type==0):
  if(len(cv_img.shape)==3):
   cv_img = cv2.cvtColor(cv_img, cv2.COLOR_BGR2GRAY)
 return cv_img
 
#多个数组按同一规则打乱数据
def ShuffledData(features,labels):
 '''
 @description:随机打乱数据与标签,但保持数据与标签一一对应
 '''
 permutation = np.random.permutation(features.shape[0])
 shuffled_features = features[permutation,:] #多维
 shuffled_labels = labels[permutation]  #1维
 return shuffled_features,shuffled_labels
 
#函数功能:简单网格
#函数要求:1.无关图像大小;2.输入图像默认为灰度图;3.参数只有输入图像
#返回数据:1x64*64维特征
def GetFeature(image):
 
 #图像大小归一化
 image = cv2.resize(image,(64,64))
 img_h = image.shape[0]
 img_w = image.shape[1]
 
 #定义特征向量
 feature = np.zeros(img_h*img_w,dtype=np.int16)
 
 for h in range(img_h):
  for w in range(img_w):
   feature[h*img_h+w] = image[h,w]
 
 return feature
 
# 写数据进程执行的代码:
def read_image_to_queue(queue):
 print('Process to write: %s' % os.getpid())
 for j,dirname in enumerate(char_set): # dirname 是文件夹名称
  label = np.where(char_set==dirname)[0][0]  #文件夹名称对应的下标序号
  print('序号:'+str(j),'读 '+dirname+' 文件夹...时间:',ctime() )
  for parent,_,filenames in os.walk(os.path.join(image_dir,dirname)):
   for filename in filenames:
    if(filename[-4:]!='.jpg'):
     continue
    image = cv_imread(os.path.join(parent,filename),0)
 
    # cv2.imshow(dirname,image)
    # cv2.waitKey(0)
    queue.put((image,label))
 
 for i in range(read_process_n):
  queue.put((None,-1))
 
 print('读图结束!')
 return True
  
# 读数据进程执行的代码:
def extract_feature(queue,lock,count):
 '''
 @description:从队列中取出图片进行特征提取
 @queue:先进先出队列
  lock:锁,在计数时上锁,防止冲突
  count:计数
 '''
 
 print('Process %s start reading...' % os.getpid())
 
 global data_n
 features = [] #存放提取到的特征
 labels = [] #存放标签
 flag = True #标志着进程是否结束
 while flag:
  image,label = queue.get() #从队列中获取图像和标签
 
  if len(features) >= data_size or label == -1: #特征数组的长度大于指定长度,则开始存储
 
   array_features = np.array(features) #转换成数组
   array_labels = np.array(labels)
 
   array_features,array_labels = ShuffledData(array_features,array_labels) #打乱数据
   
   lock.acquire() # 锁开始
 
   # 拆分数据为训练集,测试集
   split_x = int(array_features.shape[0] * 0.8)
   train_data, test_data = np.split(array_features, [split_x], axis=0)  # 拆分特征数据集
   train_labels, test_labels = np.split(array_labels, [split_x], axis=0) # 拆分标签数据集
 
   count.value += 1 #下标计数加1
   str_features_name_train = data_name+'_features_train_'+str(count.value)+'.npy'
   str_labels_name_train = data_name+'_labels_train_'+str(count.value)+'.npy'
   str_features_name_test = data_name+'_features_test_'+str(count.value)+'.npy'
   str_labels_name_test = data_name+'_labels_test_'+str(count.value)+'.npy'
 
   lock.release() # 锁释放
 
   np.save(save_path+str_features_name_train,train_data)
   np.save(save_path+str_labels_name_train,train_labels)
   np.save(save_path+str_features_name_test,test_data)
   np.save(save_path+str_labels_name_test,test_labels)
   print(os.getpid(),'save:',str_features_name_train)
   print(os.getpid(),'save:',str_labels_name_train)
   print(os.getpid(),'save:',str_features_name_test)
   print(os.getpid(),'save:',str_labels_name_test)
   features.clear()
   labels.clear()
 
  if label == -1:
   break
 
  # 获取特征向量,传入灰度图
  feature = GetFeature(image)
  features.append(feature)
  labels.append(label)
 
  # # 随机移动4次
  # for itime in range(repate_n):
  #  rMovedImage = randomMoveImage(image)
  #  feature = SimpleGridFeature(rMovedImage) # 简单网格
  #  features.append(feature)
  #  labels.append(label)
 
 print('Process %s is done!' % os.getpid())
 
if __name__=='__main__':
 time_start = time.time() # 开始计时
 
 # 父进程创建Queue,并传给各个子进程:
 image_queue = multiprocessing.Queue(maxsize=1000) #队列
 lock = multiprocessing.Lock()      #锁
 count = multiprocessing.Value('i',0)    #计数
 
 #将图写入队列进程
 write_sub_process = multiprocessing.Process(target=read_image_to_queue, args=(image_queue,))
 
 read_sub_processes = []       #读图子线程
 for i in range(read_process_n):
  read_sub_processes.append(
   multiprocessing.Process(target=extract_feature, args=(image_queue,lock,count))
  )
 
 # 启动子进程pw,写入:
 write_sub_process.start()
 
 # 启动子进程pr,读取:
 for p in read_sub_processes:
  p.start()
 
 # 等待进程结束:
 write_sub_process.join()
 for p in read_sub_processes:
  p.join()
 
 time_end=time.time()
 time_h=(time_end-time_start)/3600
 print('用时:%.6f 小时'% time_h)
 print ("读图提取特征存npy,运行结束!")

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • 深入讲解Python命令行解析模块argparse

    深入讲解Python命令行解析模块argparse

    Python 提供了一个解析命令行参数的标准库 argparse,可以让我们轻松编写用户友好的命令行接口,接下来我们就来详细介绍一下argparse 的使用方法吧
    2023-06-06
  • 解决python3在anaconda下安装caffe失败的问题

    解决python3在anaconda下安装caffe失败的问题

    下面小编就为大家带来一篇解决python3在anaconda下安装caffe失败的问题。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-06-06
  • python开发实时可视化仪表盘的示例

    python开发实时可视化仪表盘的示例

    这篇文章主要介绍了python开发实时可视化仪表盘的示例,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
    2021-05-05
  • python自动化测试三部曲之request+django实现接口测试

    python自动化测试三部曲之request+django实现接口测试

    这篇文章主要介绍了python自动化测试三部曲之request+django实现接口测试,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-10-10
  • 快速进修Python指南之面向对象基础

    快速进修Python指南之面向对象基础

    这篇文章主要为大家介绍了Java开发者快速进修Python指南之面向对象基础,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-12-12
  • Python字符串不可不知的6个小技巧分享

    Python字符串不可不知的6个小技巧分享

    字符串可以理解为一段普通的文本内容,在python里,使用引号来表示一个字符串,不同的引号表示的效果会有区别,本文将给介绍Python字符串不可不知的6个小技巧分享,并有详细的代码供大家参考,感兴趣的小伙伴可以参考一下
    2024-03-03
  • python字典dict中常用内置函数的使用

    python字典dict中常用内置函数的使用

    本文主要介绍了python字典dict中常用内置函数的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-04-04
  • Python3简单爬虫抓取网页图片代码实例

    Python3简单爬虫抓取网页图片代码实例

    这篇文章主要介绍了Python3简单爬虫抓取网页图片代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • python 读入多行数据的实例

    python 读入多行数据的实例

    下面小编就为大家分享一篇python 读入多行数据的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • 一篇文章带你了解python标准库--datetime模块

    一篇文章带你了解python标准库--datetime模块

    这篇文章主要为大家介绍了python中的datetime模块,datetime模块的接口则更直观、更容易调用,想要了解datetime模块的朋友可以参考一下
    2021-08-08

最新评论