Python中Numpy mat的使用详解

 更新时间:2019年05月24日 15:13:39   作者:Rogn  
这篇文章主要介绍了Python中Numpy mat的使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

前面介绍过用dnarray来模拟,但mat更符合矩阵,这里的mat与Matlab中的很相似。(mat与matrix等同)

基本操作

>>> m= np.mat([1,2,3]) #创建矩阵
>>> m
matrix([[1, 2, 3]])

>>> m[0]        #取一行
matrix([[1, 2, 3]])
>>> m[0,1]       #第一行,第2个数据
2
>>> m[0][1]       #注意不能像数组那样取值了
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib64/python2.7/site-packages/numpy/matrixlib/defmatrix.py", line 305, in __getitem__
  out = N.ndarray.__getitem__(self, index)
IndexError: index 1 is out of bounds for axis 0 with size 1

#将Python的列表转换成NumPy的矩阵
>>> list=[1,2,3]
>>> mat(list)
matrix([[1, 2, 3]])

#Numpy dnarray转换成Numpy矩阵
>>> n = np.array([1,2,3])
>>> n
array([1, 2, 3])
>>> np.mat(n)
matrix([[1, 2, 3]])

#排序
>>> m=np.mat([[2,5,1],[4,6,2]])  #创建2行3列矩阵
>>> m
matrix([[2, 5, 1],
    [4, 6, 2]])
>>> m.sort()          #对每一行进行排序
>>> m
matrix([[1, 2, 5],
    [2, 4, 6]])

>>> m.shape           #获得矩阵的行列数
(2, 3)
>>> m.shape[0]         #获得矩阵的行数
2
>>> m.shape[1]         #获得矩阵的列数
3

#索引取值
>>> m[1,:]           #取得第一行的所有元素
matrix([[2, 4, 6]])
>>> m[1,0:1]          #第一行第0个元素,注意左闭右开
matrix([[2]])
>>> m[1,0:3]
matrix([[2, 4, 6]])
>>> m[1,0:2]
matrix([[2, 4]])

矩阵求逆、行列式

与Numpy array相同,可参考链接

矩阵乘法

矩阵乘,与Numpy dnarray类似,可以使用np.dot()和np.matmul(),除此之外,由于matrix中重载了“*”,因此“*”也能用于矩阵乘。

>>> a = np.mat([[1,2,3], [2,3,4]])
>>> b = np.mat([[1,2], [3,4], [5,6]])
>>> a
matrix([[1, 2, 3],
    [2, 3, 4]])
>>> b
matrix([[1, 2],
    [3, 4],
    [5, 6]])
>>> a * b     #方法一
matrix([[22, 28],
    [31, 40]])
>>> np.matmul(a, b)  #方法二
matrix([[22, 28],
    [31, 40]])
>>> np.dot(a, b)   #方法三
matrix([[22, 28],
    [31, 40]])

点乘,只剩下multiply方法了。

>>> a = np.mat([[1,2], [3,4]])
>>> b = np.mat([[2,2], [3,3]])
>>> np.multiply(a, b)
matrix([[ 2, 4],
    [ 9, 12]])

矩阵转置

转置有两种方法:

>>> a
matrix([[1, 2],
    [3, 4]])
>>> a.T      #方法一,ndarray也行
matrix([[1, 3],
    [2, 4]])
>>> np.transpose(a)  #方法二
matrix([[1, 3],
    [2, 4]])

值得一提的是,matrix中求逆还有一种简便方法(ndarray中不行):

>>> a
matrix([[1, 2],
    [3, 4]])
>>> a.I
matrix([[-2. , 1. ],
    [ 1.5, -0.5]])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python中用matplotlib画图遇到的一些问题及解决

    python中用matplotlib画图遇到的一些问题及解决

    这篇文章主要介绍了python中用matplotlib画图遇到的一些问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-09-09
  • opencv python如何实现图像二值化

    opencv python如何实现图像二值化

    这篇文章主要介绍了opencv python如何实现图像二值化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • Python中unittest的数据驱动详解

    Python中unittest的数据驱动详解

    这篇文章主要介绍了Python中unittest的数据驱动详解,数据驱动测试,是一种单元测试框架,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-08-08
  • python中有关时间日期格式转换问题

    python中有关时间日期格式转换问题

    这篇文章主要介绍了python中有关时间日期格式转换问题,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-12-12
  • Python Logging 日志记录入门学习

    Python Logging 日志记录入门学习

    这篇文章主要介绍了Python Logging 日志记录入门学习,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-06-06
  • Python NLP开发之实现聊天机器人

    Python NLP开发之实现聊天机器人

    这篇文章主要为大家介绍了Python如何实现聊天机器人,即使用自然语言处理 (NLP) 来帮助用户通过文本、图形或语音与 Web 服务或应用进行交互,感兴趣的可以了解一下
    2023-05-05
  • 教你怎么用python实现字符串转日期

    教你怎么用python实现字符串转日期

    今天教各位小伙伴怎么用python实现字符串转日期,文中有非常详细的代码示例,对正在学习python的小伙伴很有帮助,需要的朋友可以参考下
    2021-05-05
  • Python OpenCV超详细讲解图像堆叠的实现

    Python OpenCV超详细讲解图像堆叠的实现

    OpenCV用C++语言编写,它具有C ++,Python,Java和MATLAB接口,并支持Windows,Linux,Android和Mac OS,OpenCV主要倾向于实时视觉应用,并在可用时利用MMX和SSE指令,本篇文章带你通过OpenCV实现图像堆叠
    2022-04-04
  • python 中 lxml 的 etree 标签解析

    python 中 lxml 的 etree 标签解析

    这篇文章主要介绍了python 中lxml的etree 标签解析,文章围绕主题展开详细内容,需要的小伙伴可以参考一下,希望对你的学习或工作有所帮助
    2022-04-04
  • python包装和授权学习教程

    python包装和授权学习教程

    包装是指对一个已经存在的对象进行系定义加工,实现授权是包装的一个特性,下面这篇文章主要给大家介绍了关于python包装和授权的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2023-06-06

最新评论