numpy.where() 用法详解

 更新时间:2019年05月27日 08:25:43   作者:massquantity  
这篇文章主要介绍了numpy.where() 用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

numpy.where (condition[, x, y])

numpy.where() 有两种用法:

1. np.where(condition, x, y)

满足条件(condition),输出x,不满足输出y。

如果是一维数组,相当于[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

>>> aa = np.arange(10)
>>> np.where(aa,1,-1)
array([-1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) # 0为False,所以第一个输出-1
>>> np.where(aa > 5,1,-1)
array([-1, -1, -1, -1, -1, -1, 1, 1, 1, 1])

>>> np.where([[True,False], [True,True]],  # 官网上的例子
       [[1,2], [3,4]],
       [[9,8], [7,6]])
array([[1, 8],
    [3, 4]])

上面这个例子的条件为[[True,False], [True,False]],分别对应最后输出结果的四个值。第一个值从[1,9]中选,因为条件为True,所以是选1。第二个值从[2,8]中选,因为条件为False,所以选8,后面以此类推。类似的问题可以再看个例子:

>>> a = 10
>>> np.where([[a > 5,a < 5], [a == 10,a == 7]],
       [["chosen","not chosen"], ["chosen","not chosen"]],
       [["not chosen","chosen"], ["not chosen","chosen"]])

array([['chosen', 'chosen'],
    ['chosen', 'chosen']], dtype='<U10')

2. np.where(condition)

只有条件 (condition),没有x和y,则输出满足条件 (即非0) 元素的坐标 (等价于numpy.nonzero)。这里的坐标以tuple的形式给出,通常原数组有多少维,输出的tuple中就包含几个数组,分别对应符合条件元素的各维坐标。

>>> a = np.array([2,4,6,8,10])
>>> np.where(a > 5)       # 返回索引
(array([2, 3, 4]),)  
>>> a[np.where(a > 5)]       # 等价于 a[a>5]
array([ 6, 8, 10])

>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))

上面这个例子条件中[[0,1],[1,0]]的真值为两个1,各自的第一维坐标为[0,1],第二维坐标为[1,0] 。

下面看个复杂点的例子:

>>> a = np.arange(27).reshape(3,3,3)
>>> a
array([[[ 0, 1, 2],
    [ 3, 4, 5],
    [ 6, 7, 8]],

    [[ 9, 10, 11],
    [12, 13, 14],
    [15, 16, 17]],

    [[18, 19, 20],
    [21, 22, 23],
    [24, 25, 26]]])

>>> np.where(a > 5)
(array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
 array([2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2]),
 array([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]))


# 符合条件的元素为
    [ 6, 7, 8]],

   [[ 9, 10, 11],
    [12, 13, 14],
    [15, 16, 17]],

   [[18, 19, 20],
    [21, 22, 23],
    [24, 25, 26]]]

所以np.where会输出每个元素的对应的坐标,因为原数组有三维,所以tuple中有三个数组。

1、numpy.where的返回结果

numpy.where调用方式为numpy.where(condition,1,2)

满足条件的位置上返回结果1,不满足的位置上返回结果2

 例如通过where()函数将a数组中负值设为0,正值不变

如果没有指定返回结果,只有查找条件则返回满足条件的位置。返回的结果是一个元组(tuple),包含两个数组,第一个数组纪录的是行,第二个数组纪录的是列。

可以使用zip函数将返回的位置组成一个个坐标对,方便调用。zip函数直接返回的是一个对象,可以用过for循环遍历出里面的元素,也可以使用list直接列出所有坐标对元素。

 2、numpy.where多条件查询

与: numpy.where((con1)*(con2))或者用&

或:numpy.where((con1)|(con2))  (重点:多条件查询时条件一定要用括号!一定要用括号!一定要用括号!)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python算法练习之兔子产子(斐波那切数列)

    python算法练习之兔子产子(斐波那切数列)

    这篇文章主要给大家介绍python算法练习兔子产子,文章先进行问题描述及分析然后设计算法最后再得出完整程序,需要的朋友可以参考一下 文章得具体内容
    2021-10-10
  • Python替换NumPy数组中大于某个值的所有元素实例

    Python替换NumPy数组中大于某个值的所有元素实例

    这篇文章主要介绍了Python替换NumPy数组中大于某个值的所有元素实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • python uuid模块使用实例

    python uuid模块使用实例

    这篇文章主要介绍了python uuid模块使用实例,本文给出简单使用示例,讲解uuid1、uuid3、 uuid4、 uuid5这几个方法,需要的朋友可以参考下
    2015-04-04
  • python里使用正则的findall函数的实例详解

    python里使用正则的findall函数的实例详解

    这篇文章主要介绍了python里使用正则的findall函数的实例详解的相关资料,希望通过本文能帮助到大家,需要的朋友可以参考下
    2017-10-10
  • 详解pandas中MultiIndex和对象实际索引不一致问题

    详解pandas中MultiIndex和对象实际索引不一致问题

    这篇文章主要介绍了详解pandas中MultiIndex和对象实际索引不一致问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-07-07
  • Flask框架Flask-Login用法分析

    Flask框架Flask-Login用法分析

    这篇文章主要介绍了Flask框架Flask-Login用法,结合实例形式分析了Flask-Login插件进行登录验证的相关操作技巧与注意事项,需要的朋友可以参考下
    2018-07-07
  • 七个非常实用的Python工具包总结

    七个非常实用的Python工具包总结

    Python 拥有海量的包,无论是普通任务还是复杂任务,我们经常在应用程序中使用大量的工具包.本文我将讨论一些常被低估的数据科学包,包括:数据清理、应用程序开发和调试方面,需要的朋友可以参考下
    2021-06-06
  • 使用Python实现有趣的锁屏小工具

    使用Python实现有趣的锁屏小工具

    这篇文章主要为大家详细介绍了如何使用Python实现有趣的锁屏小工具,这样再也不用担心因为没有锁屏被扣工资啦,打工人快跟随小编一起学习一下吧
    2023-12-12
  • Django框架用户注销功能实现方法分析

    Django框架用户注销功能实现方法分析

    这篇文章主要介绍了Django框架用户注销功能实现方法,结合实例形式分析了基于Django框架的删除cookie实现用户注销功能的相关操作技巧,需要的朋友可以参考下
    2019-05-05
  • python 多线程重启方法

    python 多线程重启方法

    今天小编就为大家分享一篇python 多线程重启方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02

最新评论