详解numpy的argmax的具体使用

 更新时间:2019年05月27日 11:30:50   作者:荷楠仁  
这篇文章主要介绍了详解numpy的argmax的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

从最简单的例子出发

假定现在有一个数组a = [3, 1, 2, 4, 6, 1]现在要算数组a中最大数的索引是多少.这个问题对于刚学编程的同学就能解决.最直接的思路,先假定第0个数最大,然后拿这个和后面的数比,找到大的就更新索引.代码如下

a = [3, 1, 2, 4, 6, 1]
maxindex = 0
i = 0
for tmp in a:
  if tmp > a[maxindex]:
    maxindex = i
  i += 1
print(maxindex)

这个问题虽然简单.但是可以帮助我们理解argmax.

解释

还是从一维数组出发.看下面的例子.

import numpy as np
a = np.array([3, 1, 2, 4, 6, 1])
print(np.argmax(a))

argmax返回的是最大数的索引.argmax有一个参数axis,默认是0,表示第几维的最大值.看二维的情况.

import numpy as np
a = np.array([[1, 5, 5, 2],
       [9, 6, 2, 8],
       [3, 7, 9, 1]])
print(np.argmax(a, axis=0))

为了描述方便,a就表示这个二维数组.np.argmax(a, axis=0)的含义是a[0][j],a[1][j],a[2][j](j=0,1,2,3)中最大值的索引.从a[0][j]开始,最大值索引最初为(0,0,0,0),拿a[0][j]和a[1][j]作比较,9大于1,6大于5,8大于2,所以最大值索引由(0,0,0,0)更新为(1,1,0,1),再和a[2][j]作比较,7大于6,9大于5所以更新为(1,2,2,1).再分析下面的输出.

import numpy as np
a = np.array([[1, 5, 5, 2],
       [9, 6, 2, 8],
       [3, 7, 9, 1]])
print(np.argmax(a, axis=1))

np.argmax(a, axis=1)的含义是a[i][0],a[i][1],a[i][2],a[i][3](i=0,1,2)中最大值的索引.从a[i][0]开始,a[i][0]对应的索引为(0,0,0),先假定它就是最大值索引(思路和上节简单例子完全一致)拿a[i][0]和a[i][1]作比较,5大于1,7大于3所以最大值索引由(0,0,0)更新为(1,0,1),再和a[i][2]作比较,9大于7,更新为(1,0,2),再和a[i][3]作比较,不用更新,最终值为(1,0,2)
再看三维的情况.

import numpy as np
a = np.array([
       [
         [1, 5, 5, 2],
         [9, -6, 2, 8],
         [-3, 7, -9, 1]
       ],

       [
         [-1, 5, -5, 2],
         [9, 6, 2, 8],
         [3, 7, 9, 1]
       ]
      ])
print(np.argmax(a, axis=0))

np.argmax(a, axis=0)的含义是a[0][j][k],a[1][j][k] (j=0,1,2,k=0,1,2,3)中最大值的索引.从a[0][j][k]开始,a[0][j][k]对应的索引为((0,0,0,0),(0,0,0,0),(0,0,0,0)),拿a[0][j][k]和a[1][j][k]对应项作比较6大于-6,3大于-3,9大于-9,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0),(0,0,0,0))更新为((0,0,0,0),(0,1,0,0),(1,0,1,0)). 再看axis=1的情况.

import numpy as np
a = np.array([
       [
         [1, 5, 5, 2],
         [9, -6, 2, 8],
         [-3, 7, -9, 1]
       ],

       [
         [-1, 5, -5, 2],
         [9, 6, 2, 8],
         [3, 7, 9, 1]
       ]
      ])
print(np.argmax(a, axis=1))

np.argmax(a, axis=1)的含义是a[i][0][k],a[i][1][k] (i=0,1,k=0,1,2,3)中最大值的索引.从a[i][0][k]开始,a[i][0][k]对应的索引为((0,0,0,0),(0,0,0,0)),拿a[i][0][k]和a[i][1][k]对应项作比较,9大于1,8大于2,9大于-1,6大于5,2大于-5,8大于2,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0))更新为((1,0,0,1),(1,1,1,1)),现在最大值对应的数组为((9,5,5,8),(9,6,2,8)).再拿((9,5,5,8),(9,6,2,8))和a[i][2][k]对应项从比较,7大于5,7大于6,9大于2.更新这几个位置的索引.将((1,0,0,1),(1,1,1,1))更新为((1,2,0,1),(1,2,2,1)).axis=2的情况也是类似的.

参考资料

numpy官方文档

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python基础之文件的备份以及定位

    python基础之文件的备份以及定位

    这篇文章主要介绍了python文件的备份以及定位,实例分析了Python中返回一个返回值与多个返回值的方法,需要的朋友可以参考下
    2021-10-10
  • python调用shell的方法

    python调用shell的方法

    这篇文章主要介绍了python调用shell的方法,python调用shell命令的方法有许多种,大家可以参考使用
    2013-11-11
  • 解决python列表list中的截取问题

    解决python列表list中的截取问题

    这篇文章主要介绍了解决python列表list中的截取问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • python实现简易聊天对话框

    python实现简易聊天对话框

    这篇文章主要为大家详细介绍了python实现简易聊天对话框,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-02-02
  • Python编程scoketServer实现多线程同步实例代码

    Python编程scoketServer实现多线程同步实例代码

    这篇文章主要介绍了Python编程scoketServer实现多线程同步实例代码,小编觉得还是挺不错的,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01
  • TensorFlow模型保存和提取的方法

    TensorFlow模型保存和提取的方法

    这篇文章主要为大家详细介绍了TensorFlow模型保存和提取的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • pycharm 2020.2.4 pip install Flask 报错 Error:Non-zero exit code的问题

    pycharm 2020.2.4 pip install Flask 报错 Error:Non-zero exit co

    这篇文章主要介绍了pycharm 2020.2.4 pip install Flask 报错 Error:Non-zero exit code,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-12-12
  • Python 深入了解opencv图像分割算法

    Python 深入了解opencv图像分割算法

    本文主要介绍了Python通过opencv实现图像分割的详细过程与代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-11-11
  • python中类变量与成员变量的使用注意点总结

    python中类变量与成员变量的使用注意点总结

    python 的类中主要会使用的两种变量:类变量与成员变量。类变量是类所有实例化对象共有的,而成员变量是每个实例化对象自身特有的。下面这篇文章主要给大家介绍了在python中类变量与成员变量的一些使用注意点,需要的朋友可以参考借鉴,下面来一起看看吧。
    2017-04-04
  • python简单验证码识别的实现方法

    python简单验证码识别的实现方法

    这篇文章主要给大家介绍了关于python简单验证码识别的实现方法,文中通过示例代码介绍的非常详细,对大家学习或者使用python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-05-05

最新评论