Python 3.8中实现functools.cached_property功能

 更新时间:2019年05月29日 10:18:14   作者:小明明S À DOMICILE  
这篇文章主要介绍了Python 3.8中实现functools.cached_property功能,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下

前言

缓存属性( cached_property )是一个非常常用的功能,很多知名Python项目都自己实现过它。我举几个例子:

bottle.cached_property

Bottle是我最早接触的Web框架,也是我第一次阅读的开源项目源码。最早知道 cached_property 就是通过这个项目,如果你是一个Web开发,我不建议你用这个框架,但是源码量少,值得一读~

werkzeug.utils.cached_property

Werkzeug是Flask的依赖,是应用 cached_property 最成功的一个项目。代码见延伸阅读链接2

pip._vendor.distlib.util.cached_property

PIP是Python官方包管理工具。代码见延伸阅读链接3

kombu.utils.objects.cached_property

Kombu是Celery的依赖。代码见延伸阅读链接4

django.utils.functional.cached_property

Django是知名Web框架,你肯定听过。代码见延伸阅读链接5

甚至有专门的一个包: pydanny/cached-property ,延伸阅读6

如果你犯过他们的代码其实大同小异,在我的观点里面这种轮子是完全没有必要的。Python 3.8给 functools 模块添加了 cached_property 类,这样就有了官方的实现了

PS: 其实这个Issue 2014年就建立了,5年才被Merge!

Python 3.8的cached_property

借着这个小章节我们了解下怎么使用以及它的作用(其实看名字你可能已经猜出来):

./python.exe
Python 3.8.0a4+ (heads/master:9ee2c264c3, May 28 2019, 17:44:24)
[Clang 10.0.0 (clang-1000.11.45.5)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from functools import cached_property
>>> class Foo:
...   @cached_property
...   def bar(self):
...     print('calculate somethings')
...     return 42
...
>>> f = Foo()
>>> f.bar
calculate somethings
42
>>> f.bar
42

上面的例子中首先获得了Foo的实例f,第一次获得 f.bar 时可以看到执行了bar方法的逻辑(因为执行了print语句),之后再获得 f.bar 的值并不会在执行bar方法,而是用了缓存的属性的值。

标准库中的版本还有一种的特点,就是加了线程锁,防止多个线程一起修改缓存。通过对比Werkzeug里的实现帮助大家理解一下:

import time
from threading import Thread
from werkzeug.utils import cached_property
class Foo:
  def __init__(self):
    self.count = 0
  @cached_property
  def bar(self):
    time.sleep(1) # 模仿耗时的逻辑,让多线程启动后能执行一会而不是直接结束
    self.count += 1
    return self.count
threads = []
f = Foo()
for x in range(10):
  t = Thread(target=lambda: f.bar)
  t.start()
  threads.append(t)
for t in threads:
  t.join()

这个例子中,bar方法对 self.count 做了自增1的操作,然后返回。但是注意f.bar的访问是在10个线程下进行的,里面大家猜现在 f.bar 的值是多少?

 ipython -i threaded_cached_property.py
Python 3.7.1 (default, Dec 13 2018, 22:28:16)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.5.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]: f.bar
Out[1]: 10

结果是10。也就是10个线程同时访问 f.bar ,每个线程中访问时由于都还没有缓存,就会给 f.count 做自增1操作。第三方库对于这个问题可以不关注,只要你确保在项目中不出现多线程并发访问场景即可。但是对于标准库来说,需要考虑的更周全。我们把 cached_property 改成从标准库导入,感受下:

./python.exe
Python 3.8.0a4+ (heads/master:8cd5165ba0, May 27 2019, 22:28:15)
[Clang 10.0.0 (clang-1000.11.45.5)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import time
>>> from threading import Thread
>>> from functools import cached_property
>>>
>>>
>>> class Foo:
...   def __init__(self):
...     self.count = 0
...   @cached_property
...   def bar(self):
...     time.sleep(1)
...     self.count += 1
...     return self.count
...
>>>
>>> threads = []
>>> f = Foo()
>>>
>>> for x in range(10):
...   t = Thread(target=lambda: f.bar)
...   t.start()
...   threads.append(t)
...
>>> for t in threads:
...   t.join()
...
>>> f.bar

可以看到,由于加了线程锁, f.bar 的结果是正确的1。

cached_property不支持异步

除了 pydanny/cached-property 这个包以外,其他的包都不支持异步函数:

./python.exe -m asyncio
asyncio REPL 3.8.0a4+ (heads/master:8cd5165ba0, May 27 2019, 22:28:15)
[Clang 10.0.0 (clang-1000.11.45.5)] on darwin
Use "await" directly instead of "asyncio.run()".
Type "help", "copyright", "credits" or "license" for more information.
>>> import asyncio
>>> from functools import cached_property
>>>
>>>
>>> class Foo:
...   def __init__(self):
...     self.count = 0
...   @cached_property
...   async def bar(self):
...     await asyncio.sleep(1)
...     self.count += 1
...     return self.count
...
>>> f = Foo()
>>> await f.bar
1
>>> await f.bar
Traceback (most recent call last):
 File "/Users/dongwm/cpython/Lib/concurrent/futures/_base.py", line 439, in result
  return self.__get_result()
 File "/Users/dongwm/cpython/Lib/concurrent/futures/_base.py", line 388, in __get_result
  raise self._exception
 File "<console>", line 1, in <module>
RuntimeError: cannot reuse already awaited coroutine
pydanny/cached-property的异步支持实现的很巧妙,我把这部分逻辑抽出来:
try:
  import asyncio
except (ImportError, SyntaxError):
  asyncio = None
class cached_property:
  def __get__(self, obj, cls):
    ...
    if asyncio and asyncio.iscoroutinefunction(self.func):
      return self._wrap_in_coroutine(obj)
    ...
  def _wrap_in_coroutine(self, obj):
    @asyncio.coroutine
    def wrapper():
      future = asyncio.ensure_future(self.func(obj))
      obj.__dict__[self.func.__name__] = future
      return future
    return wrapper()

我解析一下这段代码:

对 import asyncio 的异常处理主要为了处理Python 2和Python3.4之前没有asyncio的问题

__get__ 里面会判断方法是不是协程函数,如果是会 return self._wrap_in_coroutine(obj)
_wrap_in_coroutine 里面首先会把方法封装成一个Task,并把Task对象缓存在 obj.__dict__ 里,wrapper通过装饰器 asyncio.coroutine 包装最后返回。

为了方便理解,在IPython运行一下:

In : f = Foo()

In : f.bar  # 由于用了`asyncio.coroutine`装饰器,这是一个生成器对象
Out: <generator object cached_property._wrap_in_coroutine.<locals>.wrapper at 0x10a26f0c0>

In : await f.bar  # 第一次获得f.bar的值,会sleep 1秒然后返回结果
Out: 1

In : f.__dict__['bar']  # 这样就把Task对象缓存到了f.__dict__里面了,Task状态是finished
Out: <Task finished coro=<Foo.bar() done, defined at <ipython-input-54-7f5df0e2b4e7>:4> result=1>

In : f.bar  # f.bar已经是一个task了
Out: <Task finished coro=<Foo.bar() done, defined at <ipython-input-54-7f5df0e2b4e7>:4> result=1>

In : await f.bar  # 相当于 await task
Out: 1

可以看到多次await都可以获得正常结果。如果一个Task对象已经是finished状态,直接返回结果而不会重复执行了。

总结

以上所述是小编给大家介绍的Python 3.8中实现functools.cached_property功能,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对脚本之家网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

相关文章

  • Python中UserWarning:The NumPy module was reloaded问题的解决方案

    Python中UserWarning:The NumPy module was 

    在 Python 项目中,我们经常需要导入许多库来完成各种任务,NumPy 作为一个核心的科学计算库,被广泛应用于数据处理和分析,然而,有时我们会遇到 NumPy 重载的警告,本文将详细讲解这一警告的原因,并提供解决方案,需要的朋友可以参考下
    2024-07-07
  • pip版本低引发的python离线包安装失败的问题

    pip版本低引发的python离线包安装失败的问题

    这篇文章主要介绍了pip版本低引发的python离线包安装失败的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-09-09
  • Python内存管理方式和垃圾回收算法解析

    Python内存管理方式和垃圾回收算法解析

    这篇文章主要介绍了Python内存管理方式和垃圾回收算法解析,介绍了传统的垃圾回收机制,其工作方法,finalizer的问题等相关内容,具有一定参考价值,需要的朋友可以了解下。
    2017-11-11
  • python批量修改交换机密码的示例

    python批量修改交换机密码的示例

    这篇文章主要介绍了python批量修改交换机密码的示例,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-09-09
  • Tensorflow 2.4加载处理图片的三种方式详解

    Tensorflow 2.4加载处理图片的三种方式详解

    这篇文章主要为大家介绍了Tensorflow 2.4加载处理图片的三种方式详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-11-11
  • keras和tensorflow使用fit_generator 批次训练操作

    keras和tensorflow使用fit_generator 批次训练操作

    这篇文章主要介绍了keras和tensorflow使用fit_generator 批次训练操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-07-07
  • Python进度条神器tqdm使用实例详解

    Python进度条神器tqdm使用实例详解

    Python进度条神器tqdm是一个快速、可扩展的进度条工具,可以轻松地为Python脚本添加进度条。它可以在循环中自动计算进度,并在终端中显示进度条,让用户了解程序的运行情况。tqdm还支持多线程和多进程,并且可以自定义进度条的样式和显示方式。
    2023-06-06
  • 对tensorflow中cifar-10文档的Read操作详解

    对tensorflow中cifar-10文档的Read操作详解

    今天小编就为大家分享一篇对tensorflow中cifar-10文档的Read操作详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • python制作小说爬虫实录

    python制作小说爬虫实录

    本文给大家介绍的是作者所写的第一个爬虫程序的全过程,从构思到思路到程序的编写,非常的细致,有需要的小伙伴可以参考下
    2017-08-08
  • 在Ubuntu系统中运行python代码的几个步骤

    在Ubuntu系统中运行python代码的几个步骤

    项目中需要在Linux上运行自己写的python脚本,特此记录一下操作流程,整个流程比较简单,下面这篇文章主要给大家介绍了关于在Ubuntu系统中运行python代码的几个步骤,需要的朋友可以参考下
    2023-12-12

最新评论