人工神经网络算法知识点总结

 更新时间:2019年06月11日 11:41:01   投稿:laozhang  
在本篇内容里小编给大家分享了人工神经网络算法的相关知识点以及原理介绍,需要的朋友们参考下。

人工神经网络的许多算法已在智能信息处理系统中获得广泛采用,尤为突出是是以下4种算法:ART网络、LVQ网络、Kohonen网络Hopfield网络,下面就具体介绍一下这这四种算法:

1.自适应谐振理论(ART)网络

自适应谐振理论(ART)网络具有不同的方案。一个ART-1网络含有两层一个输入层和一个输出层。这两层完全互连,该连接沿着正向(自底向上)和反馈(自顶向下)两个方向进行。

当ART-1网络在工作时,其训练是连续进行的,且包括下列算法步骤:

(1)对于所有输出神经元,如果一个输出神经元的全部警戒权值均置为1,则称为独立神经元,因为它不被指定表示任何模式类型。

(2)给出一个新的输入模式x。

(3)使所有的输出神经元能够参加激发竞争。

(4)从竞争神经元中找到获胜的输出神经元,即这个神经元的x·W值为最大;在开始训练时或不存在更好的输出神经元时,优胜神经元可能是个独立神经元。

(5)检查该输入模式x是否与获胜神经元的警戒矢量V足够相似。

(6)如果r≥p,即存在谐振,则转向步骤(7);否则,使获胜神经元暂时无力进一步竞争,并转向步骤(4),重复这一过程直至不存在更多的有能力的神经元为止。

2.学习矢量量化(LVQ)网络

学习矢量量化(LVQ)网络,它由三层神经元组成,即输入转换层、隐含层和输出层。该网络在输入层与隐含层之间为完全连接,而在隐含层与输出层之间为部分连接,每个输出神经元与隐含神经元的不同组相连接。

最简单的LVQ训练步骤如下:

(1)预置参考矢量初始权值。

(2)供给网络一个训练输入模式。

(3)计算输人模式与每个参考矢量间的Euclidean距离。

(4)更新最接近输入模式的参考矢量(即获胜隐含神经元的参考矢量)的权值。如果获胜隐含神经元以输入模式一样的类属于连接至输出神经元的缓冲器,那么参考矢量应更接近输入模式。否则,参考矢量就离开输人模式。

(5)转至步骤(2),以某个新的训练输入模式重复本过程,直至全部训练模式被正确地分类或者满足某个终止准则为止。

3.Kohonen网络

Kohonen网络或自组织特征映射网络含有两层,一个输入缓冲层用于接收输入模式,另一个为输出层,输出层的神经元一般按正则二维阵列排列,每个输出神经元连接至所有输入神经元。连接权值形成与已知输出神经元相连的参考矢量的分量。

训练一个Kohonen网络包含下列步骤:

(1)对所有输出神经元的参考矢量预置小的随机初值。

(2)供给网络一个训练输入模式。

(3)确定获胜的输出神经元,即参考矢量最接近输入模式的神经元。参考矢量与输入矢量间的Euclidean距离通常被用作距离测量。

(4)更新获胜神经元的参考矢量及其近邻参考矢量。这些参考矢量(被引至)更接近输入矢量。对于获胜参考矢量,其调整是最大的,而对于离得更远的神经元,减少调整个神经元邻域的大小随着训练的进行而相对减小,到训练结束,只有获胜神经元的参考矢量被调整。

4.Hopfield网络

Hopfield网络是一种典型的递归网络,这种网络通常只接受二进制输入(0或1)以及双极输入(+1或-1)。它含有一个单层神经元,每个神经元与所有其他神经元连接,形成递归结构。

相关文章

  • 在Python中字典根据多项规则排序的方法

    在Python中字典根据多项规则排序的方法

    今天小编就为大家分享一篇在Python中字典根据多项规则排序的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • 快速进修Python指南之迭代器Iterator与生成器

    快速进修Python指南之迭代器Iterator与生成器

    这篇文章主要为大家介绍了Java开发者快速进修Python指南之迭代器Iterator与生成器示例解析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-12-12
  • matplotlib实现数据实时刷新的示例代码

    matplotlib实现数据实时刷新的示例代码

    这篇文章主要介绍了matplotlib实现数据实时刷新的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • python3实现逐字输出的方法

    python3实现逐字输出的方法

    今天小编就为大家分享一篇python3实现逐字输出的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • python使用pgzero进行游戏开发

    python使用pgzero进行游戏开发

    今天要和大家分享的pgzero(pygame zero)是在pygame基础上做了进一步的封装,使得设计一款游戏十分的方便,特别适合少儿编程领域的教学, 与scratch相得益彰。
    2021-06-06
  • Numpy中创建数组的9种方式小结

    Numpy中创建数组的9种方式小结

    本文主要介绍了Numpy中创建数组的9种方式小结,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-03-03
  • Python使用PEfile模块实现分析PE文件

    Python使用PEfile模块实现分析PE文件

    PeFile模块是Python中一个强大的便携式第三方PE格式分析工具,用于解析和处理Windows可执行文件,本文主要就来讲讲如何使用PEfile模块实现分析PE文件,需要的可以参考下
    2023-08-08
  • requests在python中发送请求的实例讲解

    requests在python中发送请求的实例讲解

    在本篇文章里小编给大家整理的是一篇关于requests在python中发送请求的实例讲解内容,有兴趣的朋友们可以测试学习下。
    2021-02-02
  • python 如何将两个实数矩阵合并为一个复数矩阵

    python 如何将两个实数矩阵合并为一个复数矩阵

    这篇文章主要介绍了使用python实现将两个实数矩阵合并为一个复数矩阵的操作,具有很好的参考价值,希望对大家有所帮助。
    2021-05-05
  • Windows下的Jupyter Notebook 安装与自定义启动(图文详解)

    Windows下的Jupyter Notebook 安装与自定义启动(图文详解)

    这篇文章主要介绍了Windows下的Jupyter Notebook 安装与自定义启动(图文详解),需要的朋友可以参考下
    2018-02-02

最新评论