Spark学习笔记之Spark SQL的具体使用

 更新时间:2019年06月14日 10:12:28   作者:EVAO_大个子  
这篇文章主要介绍了Spark学习笔记之Spark SQL的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

1. Spark SQL是什么?

  • 处理结构化数据的一个spark的模块
  • 它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用

2. Spark SQL的特点

  • 多语言的接口支持(java python scala)
  • 统一的数据访问
  • 完全兼容hive
  • 支持标准的连接

3. 为什么学习SparkSQL?

我们已经学习了Hive,它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所有Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快!

4. DataFrame(数据框)

  • 与RDD类似,DataFrame也是一个分布式数据容器
  • 然而DataFrame更像传统数据库的二维表格,除了数据以外,还记录数据的结构信息,即schema
  • DataFrame其实就是带有schema信息的RDD

5. SparkSQL1.x的API编程

<dependency>
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-sql_2.11</artifactId>
  <version>${spark.version}</version>
</dependency>

5.1 使用sqlContext创建DataFrame(测试用)

object Ops3 {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("Ops3").setMaster("local[3]")
    val sc = new SparkContext(conf)
    val sqlContext = new SQLContext(sc)
    val rdd1 = sc.parallelize(List(Person("admin1", 14, "man"),Person("admin2", 16, "man"),Person("admin3", 18, "man")))
    val df1: DataFrame = sqlContext.createDataFrame(rdd1)
    df1.show(1)
  }
}
case class Person(name: String, age: Int, sex: String);

5.2 使用sqlContxet中提供的隐式转换函数(测试用)

import org.apache.spark
val conf = new SparkConf().setAppName("Ops3").setMaster("local[3]")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val rdd1 = sc.parallelize(List(Person("admin1", 14, "man"), Person("admin2", 16, "man"), Person("admin3", 18, "man")))
import sqlContext.implicits._
val df1: DataFrame = rdd1.toDF
df1.show()
5.3 使用SqlContext创建DataFrame(常用)
val conf = new SparkConf().setAppName("Ops3").setMaster("local[3]")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val linesRDD: RDD[String] = sc.textFile("hdfs://uplooking02:8020/sparktest/")
val schema = StructType(List(StructField("name", StringType), StructField("age", IntegerType), StructField("sex", StringType)))
val rowRDD: RDD[Row] = linesRDD.map(line => {
 val lineSplit: Array[String] = line.split(",")
 Row(lineSplit(0), lineSplit(1).toInt, lineSplit(2))
})
val rowDF: DataFrame = sqlContext.createDataFrame(rowRDD, schema)
rowDF.show()

6. 使用新版本的2.x的API

val conf = new SparkConf().setAppName("Ops5") setMaster ("local[3]")
val sparkSession: SparkSession = SparkSession.builder().config(conf).getOrCreate()
val sc = sparkSession.sparkContext
val linesRDD: RDD[String] = sc.textFile("hdfs://uplooking02:8020/sparktest/")
//数据清洗
val rowRDD: RDD[Row] = linesRDD.map(line => {
  val splits: Array[String] = line.split(",")
  Row(splits(0), splits(1).toInt, splits(2))
})
val schema = StructType(List(StructField("name", StringType), StructField("age", IntegerType), StructField("sex", StringType)))
val df: DataFrame = sparkSession.createDataFrame(rowRDD, schema)

df.createOrReplaceTempView("p1")
val df2 = sparkSession.sql("select * from p1")
df2.show()

7. 操作SparkSQL的方式

7.1 使用SQL语句的方式对DataFrame进行操作

val conf = new SparkConf().setAppName("Ops5") setMaster ("local[3]")
val sparkSession: SparkSession = SparkSession.builder().config(conf).getOrCreate()//Spark2.x新的API相当于Spark1.x的SQLContext
val sc = sparkSession.sparkContext
val linesRDD: RDD[String] = sc.textFile("hdfs://uplooking02:8020/sparktest/")
//数据清洗
val rowRDD: RDD[Row] = linesRDD.map(line => {
  val splits: Array[String] = line.split(",")
  Row(splits(0), splits(1).toInt, splits(2))
})
val schema = StructType(List(StructField("name", StringType), StructField("age", IntegerType), StructField("sex", StringType)))
val df: DataFrame = sparkSession.createDataFrame(rowRDD, schema)

df.createOrReplaceTempView("p1")//这是Sprk2.x新的API 相当于Spark1.x的registTempTable()
val df2 = sparkSession.sql("select * from p1")
df2.show()

7.2 使用DSL语句的方式对DataFrame进行操作

DSL(domain specific language ) 特定领域语言

val conf = new SparkConf().setAppName("Ops5") setMaster ("local[3]")
val sparkSession: SparkSession = SparkSession.builder().config(conf).getOrCreate()
val sc = sparkSession.sparkContext
val linesRDD: RDD[String] = sc.textFile("hdfs://uplooking02:8020/sparktest/")
//数据清洗
val rowRDD: RDD[Row] = linesRDD.map(line => {
  val splits: Array[String] = line.split(",")
  Row(splits(0), splits(1).toInt, splits(2))
})
val schema = StructType(List(StructField("name", StringType), StructField("age", IntegerType), StructField("sex", StringType)))
val rowDF: DataFrame = sparkSession.createDataFrame(rowRDD, schema)
import sparkSession.implicits._
val df: DataFrame = rowDF.select("name", "age").where("age>10").orderBy($"age".desc)
df.show()

8. SparkSQL的输出

8.1 写出到JSON文件

val conf = new SparkConf().setAppName("Ops5") setMaster ("local[3]")
val sparkSession: SparkSession = SparkSession.builder().config(conf).getOrCreate()
val sc = sparkSession.sparkContext
val linesRDD: RDD[String] = sc.textFile("hdfs://uplooking02:8020/sparktest")
//数据清洗
val rowRDD: RDD[Row] = linesRDD.map(line => {
  val splits: Array[String] = line.split(",")
  Row(splits(0), splits(1).toInt, splits(2))
})
val schema = StructType(List(StructField("name", StringType), StructField("age", IntegerType), StructField("sex", StringType)))
val rowDF: DataFrame = sparkSession.createDataFrame(rowRDD, schema)
import sparkSession.implicits._
val df: DataFrame = rowDF.select("name", "age").where("age>10").orderBy($"age".desc)
df.write.json("hdfs://uplooking02:8020/sparktest1")

8.2 写出到关系型数据库(mysql)

val conf = new SparkConf().setAppName("Ops5") setMaster ("local[3]")
val sparkSession: SparkSession = SparkSession.builder().config(conf).getOrCreate()
val sc = sparkSession.sparkContext
val linesRDD: RDD[String] = sc.textFile("hdfs://uplooking02:8020/sparktest")
//数据清洗
val rowRDD: RDD[Row] = linesRDD.map(line => {
  val splits: Array[String] = line.split(",")
  Row(splits(0), splits(1).toInt, splits(2))
})
val schema = StructType(List(StructField("name", StringType), StructField("age", IntegerType), StructField("sex", StringType)))
val rowDF: DataFrame = sparkSession.createDataFrame(rowRDD, schema)
import sparkSession.implicits._
val df: DataFrame = rowDF.select("name", "age").where("age>10").orderBy($"age".desc)
val url = "jdbc:mysql://localhost:3306/test"
//表会自动创建
val tbName = "person1";
val prop = new Properties()
prop.put("user", "root")
prop.put("password", "root")
//SaveMode 默认为ErrorIfExists
df.write.mode(SaveMode.Append).jdbc(url, tbName, prop)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • 使用Java8进行分组(多个字段的组合分组)

    使用Java8进行分组(多个字段的组合分组)

    本文主要介绍了使用Java8进行分组(多个字段的组合分组),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-07-07
  • Jenkins安装多个jdk版本并在项目中选择对应jdk版本

    Jenkins安装多个jdk版本并在项目中选择对应jdk版本

    在使用jenkins构建项目时会遇到不同的job需要配置不同版本的jdk,下面这篇文章主要给大家介绍了关于Jenkins安装多个jdk版本并在项目中选择对应jdk版本的相关资料,需要的朋友可以参考下
    2024-03-03
  • SpringBoot中添加监听器及创建线程的代码示例

    SpringBoot中添加监听器及创建线程的代码示例

    这篇文章主要介绍了SpringBoot中如何添加监听器及创建线程,文中有详细的代码示例,具有一定的参考价值,需要的朋友可以参考下
    2023-06-06
  • Go Java算法之字符串中第一个唯一字符详解

    Go Java算法之字符串中第一个唯一字符详解

    这篇文章主要为大家介绍了Go Java算法之字符串中第一个唯一字符详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-08-08
  • SpringAOP中的通知Advice详解

    SpringAOP中的通知Advice详解

    这篇文章主要介绍了SpringAOP中的通知Advice详解,Spring 的 AOP 功能中一个关键概念是通知Advice与切点Pointcut表达式相关联在特定节点织入一些逻辑,Spring 提供了五种类型的通知,需要的朋友可以参考下
    2023-08-08
  • MyBatis不用@Param传递多个参数的操作

    MyBatis不用@Param传递多个参数的操作

    这篇文章主要介绍了MyBatis不用@Param传递多个参数的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-02-02
  • Java利用POI实现导入导出Excel表格

    Java利用POI实现导入导出Excel表格

    这篇文章主要为大家详细介绍了Java利用POI实现导入导出Excel表格,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-08-08
  • JWT原理与java操作jwt验证详解

    JWT原理与java操作jwt验证详解

    这篇文章主要介绍了JWT原理与java操作jwt验证,详细分析了JWT的基本概念、原理与java基于JWT进行token验证的相关操作技巧,需要的朋友可以参考下
    2023-06-06
  • 详解IntelliJ IDEA中TortoiseSVN修改服务器地址的方法

    详解IntelliJ IDEA中TortoiseSVN修改服务器地址的方法

    这篇文章主要介绍了详解IntelliJ IDEA中TortoiseSVN修改服务器地址的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-12-12
  • java 自己实现DataSource实现实例

    java 自己实现DataSource实现实例

    这篇文章主要介绍了java 自己实现DataSource实现代码的相关资料,需要的朋友可以参考下
    2017-05-05

最新评论