C#中对称加密算法的踩坑日常记录

 更新时间:2019年06月24日 08:34:23   作者:ixysy  
这篇文章主要给大家介绍了关于C#中对称加密算法的踩坑日常记录,文中通过示例代码介绍的非常详细,对大家学习或者使用C#具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧

1|0前言

有幸接触了一下传说中的对称加密算法3DES

感觉这些加密算法与我的工作是想去甚远的,一般没什么机会接触这些东西

今次了解了一下3DES这个对称算法

原理算不上明白,算是踩了C#中的一些坑吧

C#中对于密钥的处理比较奇怪,花费了一晚上一早上的时间才弄明白

期间偷窥了不少C#的源代码

下面由我娓娓道来

2|0简介

2|13DES算法命名

定义算法最早期的标准被放在ANS X9.52中并在1998年发布并将其描述为三重数据加密算法(简称TDEA),在ANSI X3.92中定义了该算法的三个操作但是并没有使用DES或者3DES,直到1999年发布的FIPS PUB 46-3在正式命名三重数据加密算法,大概在2004到2005的样子才正式引入三重数据加密算法,之前一直以TDEA存在着,也就是说TDEA就是3DES,但是没有使用3DES作为标准术语。

2|2基本逻辑

三重数据加密算法使用包括密钥K1,密钥K2和密钥约束K3,每一个包含56位不包含奇偶校验,算法实现公式如下:

ciphertext = EK3(DK2(EK1(plaintext)))

密文 = EK3(DK2(EK1(平文)))

用K1对数据进行加密,用K2对数据进行解密,用K3对数据再加密。

解密公式为如下:

plaintext = DK1(EK2(DK3(ciphertext)))

平文 = DK1(EK2(DK3(密文)))

用K3j对数据进行解密,用K2对数据进行加密,用K1对数据进行加密。每次加密都处理64位数据并形成一块。

2|33DES加密选项

定义了三种密钥选项。

(1)三个密钥相互独立。

(2)K1和K2密钥独立,但K1 = K3。

(3)三个密钥相等。

密钥选项1的强度最高,拥有3 x 56 = 168个独立的密钥位。

密钥选项2的安全性稍低,拥有2 x 56 = 112个独立的密钥位。该选项比简单的应用DES两次的强度较高,即使用K1和K2,因为它可以防御中途相遇攻击。

密钥选项3等同与DES,只有56个密钥位。这个选项提供了与DES的兼容性,因为第1和第2次DES操作相互抵消了。该选项不再为国家标准科技协会(NIST)所推荐,亦不为ISO/IEC 18033-3所支持。

2|4C#实现

讲真简介里用来凑字数的这些内容我其实没怎么看明白

C#中使用TripleDESCryptoServiceProvider类来实现相关功能

    public static string DesEncrypt(string input, string key)
    {
      byte[] inputArray = Encoding.UTF8.GetBytes(input);
      TripleDESCryptoServiceProvider tripleDES = new TripleDESCryptoServiceProvider();
      tripleDES.Key = Encoding.UTF8.GetBytes(key);
     
      tripleDES.Mode = CipherMode.ECB;
      tripleDES.Padding = PaddingMode.PKCS7;
      ICryptoTransform cTransform = tripleDES.CreateEncryptor();
      byte[] resultArray = cTransform.TransformFinalBlock(inputArray, 0, inputArray.Length);
      tripleDES.Clear();
      return Convert.ToBase64String(resultArray, 0, resultArray.Length);
    }

    public static string DesDecrypt(string input, string key)
    {
      byte[] inputArray = Convert.FromBase64String(input);
      TripleDESCryptoServiceProvider tripleDES = new TripleDESCryptoServiceProvider();
      tripleDES.Key = Encoding.UTF8.GetBytes(key);
      tripleDES.Mode = CipherMode.ECB;
      tripleDES.Padding = PaddingMode.PKCS7;
      ICryptoTransform cTransform = tripleDES.CreateDecryptor();
      byte[] resultArray = cTransform.TransformFinalBlock(inputArray, 0, inputArray.Length);
      tripleDES.Clear();
      return Encoding.UTF8.GetString(resultArray);
    }

从下面源码中看出,该类接收的Key为16位或24位

然后对于这个Key,C#似乎有自己的处理方式

以下为个人理解:

这个24位的key会被处理成3个8字节的独立密钥参与运算

当提供24位key时并没有什么不妥

但是当提供16位的key时 会把提供的key拆分成两个块(block) 并以第一个块作为第三个块组成一个24位的密钥

如下:

输入密钥:49, 50, 51, 52, 53, 54, 55, 56, 57, 49, 50, 51, 52, 53, 54, 55

实际使用:49, 50, 51, 52, 53, 54, 55, 56, 57, 49, 50, 51, 52, 53, 54, 55, 49, 50, 51, 52, 53, 54, 55, 56

可以看出使用了前8位来进行后面8位的补全

这时候你可能要问,如果提供一个不是16位也不是24位的密钥时会发生什么

会抛异常

以上理解都是在.NetFramework中的体现

如果换到NetCore中,效果就又不一样了

2|5NetCore

在NetCore中不存在TripleDESCryptoServiceProvider 取而代之的是 TripleDES

所以此时我们的代码需要稍作修改

public static string DesEncrypt(string input, string key)
    {

      byte[] inputArray = Encoding.UTF8.GetBytes(input);
      var tripleDES = TripleDES.Create();
      var byteKey = Encoding.UTF8.GetBytes(key);
      tripleDES.Key = byteKey;
      tripleDES.Mode = CipherMode.ECB;
      tripleDES.Padding = PaddingMode.PKCS7;
      ICryptoTransform cTransform = tripleDES.CreateEncryptor();
      byte[] resultArray = cTransform.TransformFinalBlock(inputArray, 0, inputArray.Length);
      return Convert.ToBase64String(resultArray, 0, resultArray.Length);
    }

    public static string DesDecrypt(string input, string key)
    {
      byte[] inputArray = Convert.FromBase64String(input);
      var tripleDES = TripleDES.Create();
      var byteKey = Encoding.UTF8.GetBytes(key);
      tripleDES.Key = byteKey;
      tripleDES.Mode = CipherMode.ECB;
      tripleDES.Padding = PaddingMode.PKCS7;
      ICryptoTransform cTransform = tripleDES.CreateDecryptor();
      byte[] resultArray = cTransform.TransformFinalBlock(inputArray, 0, inputArray.Length);
      return Encoding.UTF8.GetString(resultArray);
    }

NetCore中同样要求我们提供24位的Key

但是不在兼容16位的Key,如果你提供一个非24位的Key就会异常

不过没关系,对于16位的Key我们可以自行处理一下

同理使用前8位补全后8位

    public static string DesEncrypt(string input, string key)
    {

      byte[] inputArray = Encoding.UTF8.GetBytes(input);
      var tripleDES = TripleDES.Create();
      var byteKey = Encoding.UTF8.GetBytes(key);
      //复制前8位补全后8位
      byte[] allKey = new byte[24];
      Buffer.BlockCopy(byteKey, 0, allKey, 0, 16);
      Buffer.BlockCopy(byteKey, 0, allKey, 16, 8);
      tripleDES.Key = allKey;
      tripleDES.Mode = CipherMode.ECB;
      tripleDES.Padding = PaddingMode.PKCS7;
      ICryptoTransform cTransform = tripleDES.CreateEncryptor();
      byte[] resultArray = cTransform.TransformFinalBlock(inputArray, 0, inputArray.Length);
      return Convert.ToBase64String(resultArray, 0, resultArray.Length);
    }

    public static string DesDecrypt(string input, string key)
    {
      byte[] inputArray = Convert.FromBase64String(input);
      var tripleDES = TripleDES.Create();
      var byteKey = Encoding.UTF8.GetBytes(key);
      //复制前8位补全后8位
      byte[] allKey = new byte[24];
      Buffer.BlockCopy(byteKey, 0, allKey, 0, 16);
      Buffer.BlockCopy(byteKey, 0, allKey, 16, 8);
      tripleDES.Key = allKey;
      tripleDES.Mode = CipherMode.ECB;
      tripleDES.Padding = PaddingMode.PKCS7;
      ICryptoTransform cTransform = tripleDES.CreateDecryptor();
      byte[] resultArray = cTransform.TransformFinalBlock(inputArray, 0, inputArray.Length);
      return Encoding.UTF8.GetString(resultArray);
    }

至此就可以正常兼容NetFramework的代码了

3|0小结

至此写下此文,也算是对3DES有了些许了解吧

需要记住

在.NET Core中利用3DES加密和解密必须要给出3个密钥即24个字节即使密钥3和密钥1相等,它不会像.NET Framework中会重用密钥1中的位数。

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对脚本之家的支持。

相关文章

  • C# 设计模式系列教程-策略模式

    C# 设计模式系列教程-策略模式

    策略模式是一种定义一系列算法的方法,从概念上来看,所有算法完成的都是相同的工作,只是实现不同,它可以以相同的方式调用所有的算法,减少了各种算法类与使用算法类之间的耦合。
    2016-06-06
  • C#中foreach循环对比for循环的优势和劣势

    C#中foreach循环对比for循环的优势和劣势

    循环语句是编程的基本语句,在C#中除了沿用C语言的循环语句外,还提供了foreach语句来实现循环,下面这篇文章主要给大家介绍了关于C#中foreach循环对比for循环的优势和劣势,需要的朋友可以参考借鉴,下面来一起看看吧。
    2017-09-09
  • c# 控件截图的简单实例

    c# 控件截图的简单实例

    这篇文章介绍了c# 控件截图的简单实例,有需要的朋友可以参考一下
    2013-10-10
  • C#实现快递api接口调用方法

    C#实现快递api接口调用方法

    这篇文章主要介绍了C#实现快递api接口调用方法,主要是通过快递API网接口的服务,使用的时候直接申请个接口UID即可,有需要的小伙伴来参考下吧。
    2015-03-03
  • Unity 实现鼠标滑过UI时触发动画的操作

    Unity 实现鼠标滑过UI时触发动画的操作

    这篇文章主要介绍了Unity 实现鼠标滑过UI时触发动画的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04
  • C#中IEnumerator<T>和IEnumerable的区别

    C#中IEnumerator<T>和IEnumerable的区别

    在C#中,IEnumerator<T>和IEnumerable是用于实现迭代的接口,本文主要介绍了C#中IEnumerator<T>和IEnumerable的区别,具有一定的参考价值,感兴趣的可以了解一下
    2024-01-01
  • 关于C#中GUI编程的标准事件问题

    关于C#中GUI编程的标准事件问题

    这篇文章主要介绍了C#中GUI编程的标准事件,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-01-01
  • WPF通过线程使用ProcessBar的方法详解

    WPF通过线程使用ProcessBar的方法详解

    这篇文章主要给大家介绍了关于WPF通过线程使用ProcessBar的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用WPF具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-04-04
  • C# 在PDF中添加墨迹注释Ink Annotation的步骤详解

    C# 在PDF中添加墨迹注释Ink Annotation的步骤详解

    PDF中的墨迹注释表现为徒手涂鸦式的形状,该类型的注释,可任意指定形状顶点的位置及个数,通过指定的顶点,程序将连接各点绘制成平滑的曲线,下面通过C#程序代码介绍下在pdf中添加注释的步骤,感兴趣的朋友一起看看吧
    2022-02-02
  • C# 实现QQ式截图功能实例代码

    C# 实现QQ式截图功能实例代码

    本篇文章主要介绍了C# 实现QQ式截图功能实例代码,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-02-02

最新评论