使用Python Pandas处理亿级数据的方法

 更新时间:2019年06月24日 11:16:39   作者:frchen  
这篇文章主要介绍了使用Python Pandas处理亿级数据的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧

在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章《别老扯什么Hadoop了,你的数据根本不够大》指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择。这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据:

硬件环境

  • CPU:3.5 GHz Intel Core i7
  • 内存:32 GB HDDR 3 1600 MHz
  • 硬盘:3 TB Fusion Drive

数据分析工具

  • Python:2.7.6
  • Pandas:0.15.0
  • IPython notebook:2.0.0

源数据如下表所示:

  Table Size Desc
ServiceLogs 98,706,832 rows x 14 columns 8.77 GB 交易日志数据,每个交易会话可以有多条交易
ServiceCodes 286 rows × 8 columns 20 KB 交易分类的字典表

数据读取

启动IPython notebook,加载pylab环境:

ipython notebook --pylab=inline

Pandas提供了IO工具可以将大文件分块读取,测试了一下性能,完整加载9800万条数据也只需要263秒左右,还是相当不错了。

import pandas as pd
reader = pd.read_csv('data/servicelogs', iterator=True)
try:
  df = reader.get_chunk(100000000)
except StopIteration:
  print "Iteration is stopped."

  1百万条 1千万条 1亿条
ServiceLogs 1 s 17 s 263 s

使用不同分块大小来读取再调用pandas.concat连接DataFrame,chunkSize设置在1000万条左右速度优化比较明显。

loop = True
chunkSize = 100000
chunks = []
while loop:
  try:
    chunk = reader.get_chunk(chunkSize)
    chunks.append(chunk)
  except StopIteration:
    loop = False
    print "Iteration is stopped."
df = pd.concat(chunks, ignore_index=True)

下面是统计数据,Read Time是数据读取时间,Total Time是读取和Pandas进行concat操作的时间,根据数据总量来看,对5~50个DataFrame对象进行合并,性能表现比较好。

Chunk Size Read Time (s) Total Time (s) Performance100,000224.418173261.358521200,000232.076794256.6741541,000,000213.128481234.934142√√2,000,000208.410618230.006299√√√5,000,000209.460829230.939319√√√10,000,000207.082081228.135672√√√√20,000,000209.628596230.775713√√√50,000,000222.910643242.405967100,000,000263.574246263.574246

如果使用Spark提供的Python Shell,同样编写Pandas加载数据,时间会短25秒左右,看来Spark对Python的内存使用都有优化。

数据清洗

Pandas提供了DataFrame.describe方法查看数据摘要,包括数据查看(默认共输出首尾60行数据)和行列统计。由于源数据通常包含一些空值甚至空列,会影响数据分析的时间和效率,在预览了数据摘要后,需要对这些无效数据进行处理。

首先调用DataFrame.isnull()方法查看数据表中哪些为空值,与它相反的方法是DataFrame.notnull(),Pandas会将表中所有数据进行null计算,以True/False作为结果进行填充,如下图所示:

Pandas的非空计算速度很快,9800万数据也只需要28.7秒。得到初步信息之后,可以对表中空列进行移除操作。尝试了按列名依次计算获取非空列,和DataFrame.dropna()两种方式,时间分别为367.0秒和345.3秒,但检查时发现 dropna() 之后所有的行都没有了,查了Pandas手册,原来不加参数的情况下, dropna() 会移除所有包含空值的行。如果只想移除全部为空值的列,需要加上 axis 和 how 两个参数:

df.dropna(axis=1, how='all')

共移除了14列中的6列,时间也只消耗了85.9秒。

接下来是处理剩余行中的空值,经过测试,在DataFrame.replace()中使用空字符串,要比默认的空值NaN节省一些空间;但对整个CSV文件来说,空列只是多存了一个“,”,所以移除的9800万 x 6列也只省下了200M的空间。进一步的数据清洗还是在移除无用数据和合并上。

对数据列的丢弃,除无效值和需求规定之外,一些表自身的冗余列也需要在这个环节清理,比如说表中的流水号是某两个字段拼接、类型描述等,通过对这些数据的丢弃,新的数据文件大小为4.73GB,足足减少了4.04G!

数据处理

使用DataFrame.dtypes可以查看每列的数据类型,Pandas默认可以读出int和float64,其它的都处理为object,需要转换格式的一般为日期时间。DataFrame.astype()方法可对整个DataFrame或某一列进行数据格式转换,支持Python和NumPy的数据类型。

df['Name'] = df['Name'].astype(np.datetime64)

对数据聚合,我测试了 DataFrame.groupby 和 DataFrame.pivot_table 以及 pandas.merge ,groupby 9800万行 x 3列的时间为99秒,连接表为26秒,生成透视表的速度更快,仅需5秒。

df.groupby(['NO','TIME','SVID']).count() # 分组
fullData = pd.merge(df, trancodeData)[['NO','SVID','TIME','CLASS','TYPE']] # 连接
actions = fullData.pivot_table('SVID', columns='TYPE', aggfunc='count') # 透视表

根据透视表生成的交易/查询比例饼图:

将日志时间加入透视表并输出每天的交易/查询比例图:

total_actions = fullData.pivot_table('SVID', index='TIME', columns='TYPE', aggfunc='count')
total_actions.plot(subplots=False, figsize=(18,6), kind='area')

除此之外,Pandas提供的DataFrame查询统计功能速度表现也非常优秀,7秒以内就可以查询生成所有类型为交易的数据子表:

tranData = fullData[fullData['Type'] == 'Transaction']

该子表的大小为[10250666 rows x 5 columns]。在此已经完成了数据处理的一些基本场景。实验结果足以说明,在非“>5TB”数据的情况下,Python的表现已经能让擅长使用统计分析语言的数据分析师游刃有余。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python中的默认参数实例分析

    Python中的默认参数实例分析

    这篇文章主要介绍了Python中的默认参数实例分析,分享了相关代码示例,小编觉得还是挺不错的,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01
  • Python的批量远程管理和部署工具Fabric用法实例

    Python的批量远程管理和部署工具Fabric用法实例

    这篇文章主要介绍了Python的批量远程管理和部署工具Fabric用法,实例分析了Fabric的功能与具体使用方法,需要的朋友可以参考下
    2015-01-01
  • Python subprocess库六个实例快速掌握

    Python subprocess库六个实例快速掌握

    这次来说Python的第三方库subprocess库,在python2.4以上的版本commands模块被subprocess取代了。一般当我们在用Python写运维脚本时,需要履行一些Linux shell的命令,Python中subprocess模块就是专门用于调用Linux shell命令,并返回状态和结果,可以完美的解决这个问题
    2022-10-10
  • python通过伪装头部数据抵抗反爬虫的实例

    python通过伪装头部数据抵抗反爬虫的实例

    下面小编就为大家分享一篇python通过伪装头部数据抵抗反爬虫的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • Python制作简单的网页爬虫

    Python制作简单的网页爬虫

    自己写的一个爬虫,模仿了python核心编程书里的程序,有详细的注释。 是我一个理解学习的过程吧。 有需要的小伙伴可以参考下
    2015-11-11
  • Python Scrapy库构建基础爬虫

    Python Scrapy库构建基础爬虫

    这篇文章主要为大家介绍了Python Scrapy库构建基础爬虫示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-08-08
  • 对Python协程之异步同步的区别详解

    对Python协程之异步同步的区别详解

    今天小编就为大家分享一篇对Python协程之异步同步的区别详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02
  • 新一代爬虫利器Python Playwright详解

    新一代爬虫利器Python Playwright详解

    这篇文章主要为大家介绍了新一代爬虫利器Playwright,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-12-12
  • 详谈Python基础之内置函数和递归

    详谈Python基础之内置函数和递归

    下面小编就为大家带来一篇Python基础之内置函数和递归。小编觉得挺不错的。现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-06-06
  • python如何生成textgrid文件

    python如何生成textgrid文件

    这篇文章主要介绍了python如何生成textgrid文件,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧
    2024-07-07

最新评论