pandas DataFrame 交集并集补集的实现
更新时间:2019年06月24日 14:18:33 作者:niuniuc.vip
这篇文章主要介绍了pandas DataFrame 交集并集补集的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
1.场景,对于colums都相同的dataframe做过滤的时候
例如:
df1 = DataFrame([['a', 10, '男'], ['b', 11, '男'], ['c', 11, '女'], ['a', 10, '女'], ['c', 11, '男']], columns=['name', 'age', 'sex']) df2 = DataFrame([['a', 10, '男'], ['b', 11, '女']], columns=['name', 'age', 'sex'])
取交集:print(pd.merge(df1,df2,on=['name', 'age', 'sex']))
取并集:print(pd.merge(df1,df2,on=['name', 'age', 'sex'], how='outer'))
取差集(从df1中过滤df1在df2中存在的行):
df1 = df1.append(df2) df1 = df1.append(df2) df1 = df1.drop_duplicates(subset=['name', 'age', 'sex'],keep=False) print(df1)
代码:
# -*- coding:utf-8 -*- __version__ = '1.0.0.0' """ @brief : 简介 @details: 详细信息 @author : zhphuang @date : 2018-10-29 """ import pandas as pd from pandas import * df1 = DataFrame([['a', 10, '男'], ['b', 11, '男'], ['c', 11, '女'], ['a', 10, '女'], ['c', 11, '男']], columns=['name', 'age', 'sex']) print("df1:\n%s\n\n" % df1) df2 = DataFrame([['a', 10, '男'], ['b', 11, '女']], columns=['name', 'age', 'sex']) print("df2:\n%s\n\n" % df2) # 取交集 print("交集:\n%s\n\n" % pd.merge(df1,df2,on=['name', 'age', 'sex'])) # 取并集 print("并集:\n%s\n\n" % pd.merge(df1,df2,on=['name', 'age', 'sex'], how='outer')) # 从df1中过滤df1在df2中存在的行,也就是取补集 df1 = df1.append(df2) df1 = df1.append(df2) print("补集(从df1中过滤df1在df2中存在的行):\n%s\n\n" % df1.drop_duplicates(subset=['name', 'age', 'sex'],keep=False))
截图
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
相关文章
Django定制Admin页面详细实例(展示页面和编辑页面)
django自带的admin因为功能和样式比较简陋,常常需要再次定制,下面这篇文章主要给大家介绍了关于Django定制Admin页面(展示页面和编辑页面)的相关资料,需要的朋友可以参考下2023-06-06
最新评论