pandas DataFrame 交集并集补集的实现

 更新时间:2019年06月24日 14:18:33   作者:niuniuc.vip  
这篇文章主要介绍了pandas DataFrame 交集并集补集的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

1.场景,对于colums都相同的dataframe做过滤的时候

例如:

df1 = DataFrame([['a', 10, '男'], 
         ['b', 11, '男'], 
         ['c', 11, '女'], 
         ['a', 10, '女'],
         ['c', 11, '男']], 
        columns=['name', 'age', 'sex'])

df2 = DataFrame([['a', 10, '男'], 
         ['b', 11, '女']],
        columns=['name', 'age', 'sex'])

取交集:print(pd.merge(df1,df2,on=['name', 'age', 'sex']))

取并集:print(pd.merge(df1,df2,on=['name', 'age', 'sex'], how='outer'))

取差集(从df1中过滤df1在df2中存在的行):

df1 = df1.append(df2)
df1 = df1.append(df2)
df1 = df1.drop_duplicates(subset=['name', 'age', 'sex'],keep=False)
print(df1)

代码:

# -*- coding:utf-8 -*-
__version__ = '1.0.0.0'
"""
@brief :  简介
@details:  详细信息
@author :  zhphuang
@date  :  2018-10-29
"""

import pandas as pd
from pandas import *

df1 = DataFrame([['a', 10, '男'],
         ['b', 11, '男'],
         ['c', 11, '女'],
         ['a', 10, '女'],
         ['c', 11, '男']],
        columns=['name', 'age', 'sex'])
print("df1:\n%s\n\n" % df1)
df2 = DataFrame([['a', 10, '男'],
         ['b', 11, '女']],
        columns=['name', 'age', 'sex'])
print("df2:\n%s\n\n" % df2)
# 取交集
print("交集:\n%s\n\n" % pd.merge(df1,df2,on=['name', 'age', 'sex']))

# 取并集
print("并集:\n%s\n\n" % pd.merge(df1,df2,on=['name', 'age', 'sex'], how='outer'))

# 从df1中过滤df1在df2中存在的行,也就是取补集
df1 = df1.append(df2)
df1 = df1.append(df2)
print("补集(从df1中过滤df1在df2中存在的行):\n%s\n\n" % df1.drop_duplicates(subset=['name', 'age', 'sex'],keep=False))

截图

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

最新评论